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RESUME

On évalue dans cet article la performance empirigue d’'un modele dynamique
d’évaluation d’options qui fournit une formule de prix fondée sur des processus latents de
variables d’état. Cette formule est une généralisation de la formule dite de Hull et White (1987)
qui évalue une option européenne écrite sur un actif a volatilité stochastique. On propose dans
un premier temps de fonder sur cette formule une procédure empirique ad hoc permettant
I'évaluation d’'une option a partir du calcul de deux paramétres implicites extraits sur les prix
d’'options observeés la veille. Appliquée a la prévision des prix d’options sur l'indice S&P 500,
cette procédure offre un gain de précision significatif par rapport a la pratigue usuelle de
prévision des prix a travers une volatilité implicite conformément a ce que suggere la formule
de Hull et White. Dans un second temps, on propose de particulariser le modele dans un
contexte d'équilibre intertemporel avec utilité récursive. On fournit alors des résultats
d’expériences de Monte Carlo montrant que les statistiques de prix d’options produisent des
estimateurs des parametres structurels de I'équilibre beaucoup plus précis que les données
de prix de l'actif sous-jacent. Ceci suggere en retour que les parametres structurels devraient
jouer un réle important dans I'évaluation d’options. Cette affirmation est validée empiriquement
sur les données d’'options sur 'indice S&P 500 en montrant que la formule de Hull et White est
dominée, en termes de prévision des prix doptions hors-échantillon par une formule
dépendant explicitement de parametres de préférence, a fortiori si ceux-ci prennent en compte
de facon non contrainte a la fois l'aversion pour le risque et I'élasticité de substitution

intertemporelle.

Mots clés : évaluation d'options, facteur d'actualisation stochastique, volatilité stochastique,
volatilité implicite de Black-Scholes, effet de sourire, modéle d'équilibre

d'évaluation d'options



ABSTRACT

This paper assesses the empirical performance of an intertemporal option pricing
model with latent variables which generalizes the Hull-White stochastic volatility formula. Using
this generalized formula in an ad-hoc fashion to extract two implicit parameters and forecast
next day S&P 500 option prices, we obtain similar pricing errors than with implied volatility
alone as in the Hull-White case. When we specialize this model to an equilibrium recursive
utility model, we show through simulations that option prices are more informative than stock
prices about the structural parameters of the model. We also show that a simple method of
moments with a panel of option prices provides good estimates of the parameters of the
model. This lays the ground for an empirical assessment of this equilibrium model with S&P

500 option prices in terms of pricing errors.

Key words : option pricing, stochastic discount factor, stochastic volatility, Black-Scholes

implied volatility, smile effect, equilibrium option pricing



1. Introduction

The search for option pricing models that will outperform the market makers’
method of using implied volatilities across moneyness and maturity is never end-
ing, but has failed to produce a clear winner. The ad-hoc strawman as dubbed by
Dumas, Fleming and Whaley (1998) is based of course on an internally inconsis-
tent procedure since volatilities that vary with time and maturity are extracted
from the constant-volatility Black and Scholes (1973) model. Yet, Dumas, Fleming
and Whaley (1998) show that it performs marginally better than the theoretically-
consistent deterministic volatility approach based on implied binomial trees.

This ad-hoc procedure which is applied in practice to predict option prices can
be rationalized by a Hull and White (1987) stochastic volatility model where we
deliberately forget the Jensen effect associated with the conditional expectation
of the Black-Scholes formula with respect to the stochastic volatility process. In
other words, we assimilate the Hull-White formula, which is a prediction of Black-
Scholes given the volatility process, with a Black-Scholes formula of the predicted
volatility.

In this paper, we pursue a similar idea with an option pricing model devel-
oped in Garcia, Luger and Renault (2000) which generalizes the Black and Scholes
(1973) and Hull and White (1987) formulas. In this model, we specify the joint
dynamics of the stochastic discount factor and the stock returns as a function of
a set of latent state variables. Along with the implied volatility, we can extract
an implicit factor that modifies the value of the stock. This additional implicit el-
ement proves crucial in predicting option prices. Substantial gains are made with
respect to the implied volatility strawman for near-the-money and in-the-money
options, while similar performances are obtained for out-of-the-money options. In
Garcia, Luger and Renault (2000), we show that this factor explains the vari-
ous asymmetries in shapes of smiles, smirks and frowns of the observed implied
volatility curves. Our prediction exercise is conducted with S&P 500 index option
prices from 1988 to 1997.

One of the features of this generalized option pricing model is that it is not
in general preference-free. Preference parameters appear precisely in the factor
modifying the stock price, which depends on the characteristics of the stochastic
discount factor. In so-called preference-free formulas, it happens that these para-

meters are eliminated from the option pricing formula through the observation of



the bond price and the stock price. In our case, the bond pricing formula and the
stock pricing formula provide two dynamic restrictions relating the SDF charac-
teristics to the bond and stock price processes. Therefore, it appears natural to
investigate the informativeness of option prices.

First, based on simulations, we show that option prices are more informative
than stock prices about the structural parameters of the asset pricing model. The
model is cast within the recursive utility framework of Epstein and Zin (1989) in
which the respective roles of discounting, risk aversion and intertemporal substi-
tution are disentangled. More precisely, we show that a set moment conditions
based on the mean, variance and autocovariance of order one of stock returns
does not provide good estimates of the preference parameters. Therefore, one
can possibly question the empirical tests of intertemporal asset pricing models
that have been based mostly on bond and stock returns. On the contrary, similar
moment conditions with option prices recover with great accuracy the preference
parameters. Part of the explanation lies probably in the better spanning of the
stochastic discount factor (or the underlying risk neutral probability distribution)
by a panel of option prices. The nonlinear nature of the option payoffs could also
help given the nonlinearity in parameters in the model.

We further show that a simple method of moments with a panel of option
prices provides good estimates of all the parameters of the model, that is parame-
ters associated with the fundamentals in the economy along with the preference
parameters. This lays the ground for an empirical assessment of the model with
S&P 500 option prices in terms of out-of-sample pricing errors and a compari-
son with usual stochastic volatility and expected utility models which appear as
particular cases of our general framework. Our results indicate clearly that the ex-
plicit incorporation of preferences improves the performance of the option pricing
model and that time nonseparable preferences improve the results further.

The interplay between preferences and latent factors that affect the stochastic
discount factor have been explored recently. David and Veronesi (1999) show
that option prices are affected by investors’ beliefs about the drift of a firm’s
fundamentals. In particular, they show how investors’ beliefs and their degree
of risk aversion affect stock returns and hence option prices. The importance of
preference parameters in explaining fluctuations in equity prices has also been
explored by Mehra and Sah (1998) who show that small changes in investors’

subjective discount factors and attitudes towards risk can induce volatility in



equity prices. The main thesis of the paper is that some instantaneous causality
effects between state variables and asset prices can capture the stylized facts of
interest without having to introduce any fluctuation in beliefs or preferences.
The rest of the paper is organized as follows. Section 2 presents a generalized
option pricing formula with latent variables developed in Garcia, Luger and Re-
nault (2000) and draws its empirical implications. The performance of an implied
stock index is compared to the performance of the usual implied volatility to price
options on the S&P 500. Section 3 explores the implications of the option pricing
formula with a specific stochastic discount factor based on recursive utility. We
make explicit the information about preference parameters contained in option
prices. Pricing errors with respect to competing models are assessed for S&P 500

option prices. Section 4 concludes.

2. A Generalized Option Pricing Formula with Latent Variables

2.1. Conditioning Information and Log-Normality

To define a general pricing functional 7,(.) which characterizes the price at time
t of a single payoff pr occurring at time 7" > t, a cornerstone is the no-arbitrage
condition. Hansen and Richard (1987) show that, in a very general setting, this
condition amounts to the existence of a positive stochastic discount factor (SDF)

my r such that, for any payoft pr.

Wt(pT) = E[mt,TpT|Jt] (2-1)

where J; is the relevant conditioning information at time ¢. Moreover, Hansen
and Richard (1987) emphasize that if all the finite variance (given .J;) random
variables are feasible payoffs, one and only one among them is a correct SDF. We
will therefore refer to the SDF! and think about it as a payoff. In addition, since
agents observe typically more than the econometrician, the information set J; at
time ¢ may contain not only past values of prices and payoffs, but also some latent
state variables.

Extending the Hansen and Richard (1987) setting to an intertemporal frame-
work and applying the law of iterated expectations, the log-SDF's necessarily fulfill:

INotice that this unicity property does not refer to any completeness property which would

be unrealistic in discrete time.



logmy 1, =logmyr, +logmp n, , for t <1y < 1. (2.2)

and therefore: m,r = Hf;tl m,, with: m,; = m,_; ;. Following Constantinides

(1992), rather than specifying the SDF sequence through a given specification of
preferences, we will directly specify the time-series properties of the stochastic
process? my, t = 1,2,..T. The key feature of the asset pricing model with latent
variables developed in Garcia, Luger and Renault (2000) is an assumption about
the sequence (m;)1<r<r of unit period SDFs which amounts to a factor analysis
in the longitudinal dimension: there exists a number of state variables which
summarize their stochastic dependence, in the sense that, given the state variables,
consecutive SDFs are mutually conditionally independent. The same assumption
is made about the sequence of consecutive returns of the primitive asset of interest
on which options are written. Therefore, in terms of the joint distribution of m;
and returns on a given asset price Sy, we maintain the following assumption.

Assumption 1: The variables (m 1, Sg=:L1)1STST_1 are conditionally serially

independent given the path U] = (U;)1<,<r of a vector U, of state variables.

The relevant conditioning information at time ¢ will be: J; = o[m, S;,U;, 7 <
t]. This model provides two extensions relative to Constantinides (1992). In the
latter, since the focus of interest was the term structure of interest rates and op-
tions written on bonds, Assumption 1 was only maintained for the SDF sequence
(my). Resulting bond prices were therefore deterministic functions of the state
variables, and Assumption 1 becomes trivial with S; viewed as a bond price. The
second extension relates to the processes considered for the state variables. While
Constantinides (1992) considers only AR(1) processes, our general setting accom-
modates any process. In particular, we have in mind general Markov switching
models which can capture any kind of stochastic volatility and jumps in the return
process as well as in the volatility.

The simplicity of the Black and Scholes option pricing methodology stems
from the joint log-normality of the SDF and the primitive asset return, but the
corresponding normal probability distribution is unconditional and degenerate.

We extend it in a conditional and bivariate setting:

2 As stressed by Constantinides (1992), this alternative approach makes it unnecessary to
assume an economy with a representative consumer with von Neumann-Morgenstern preferences.

Actually we will consider in section 3 more general non time-separable preferences.



Assumption 2: The conditional probability distribution of (log 11, log St5=t1)

given U is, for t = 1,...,T — 1, a bivariate normal®:

R {( Homty1 ) 7 [ Tt Ungstﬂ H -
Hst41 Omst+1  Ogp41

Assumption 2 is somehow a consequence of a standard central limit argument
which can be applied thanks to the additivity property (2.2) through an arbitrary
time scale. Given these two quite standard assumptions, to repeat, a Hansen
and Richard (1987) setting and a factor analysis-type assumption about the joint
series of returns and the SDF, one obtains the generalized Black-Scholes (GBS)
option pricing formula derived in Garcia, Luger and Renault (2000) and reported
below.

However, it should be recognized that this setting is really useful only if the
required set of state variables is sufficiently reduced to be considered as stationary,

Markov and exogenous. We therefore add the following assumption.

Assumption 3: The conditional moments fi,,, 1, fter 415 0'2m7—+170'25T+1,0'ms7—+1
are fixed functions p,,, iy, 02m 025 0ms of the current (Uyy1) and lagged (U;) state

variables.

As usual for dynamic exogeneity in econometrics, we maintain a non-causality

assumption from the processes ( my1, Sg—tl) to the state variables in order to
ensure that future values of the state variables are irrelevant in the conditioning
of Assumption 2. In the next section, we explore the empirical implications of

this general model, which does not impose any restrictions about preferences.

2.2. Empirical Implications of the Generalized Black and Scholes Op-
tion Pricing Model

According to the generalized Black and Scholes option pricing formula derived by

Garcia, Luger and Renault (2000) based on the set of assumptions summarized in

subsection 2.1 above, the price m; at time ¢ of an European call maturing at time

T with strike price K is given by:

r = E, {Qms (t,7)S,®(dv) — K B(t, T)(I)(dgt)} (2.3)

3Notice that, due to Assumption 1, this bivariate normal distribution is also the conditional

probability distribution of (logmyy1,log q—g‘—l) given U{ and J;.



where Iy denotes the conditional expectation operator given J;, ® the cumulative

distribution function of the standard normal,

d 1 Qms (ta T)St ?t,T
1t — = =~
i1 KB(t,T) 2
dyy = dy — O, T
T
U?,T = Z Og'r
T=t+1

and:

T T
~ 1
B(t,T) = exp( E Moy + 5 E 0% mr)

T=t+1 T=t+1
a S
= T
Qms(t,T) = B(t,T)exp( Y amST)E[Tt|U1T]. (2.4)
T=t+1

This general pricing formula provides a fortiori a pricing equation for the
underlying asset (say a stock) and for a bond. These equations can be written

respectively:

E[Qus(t, T)] = 1,and (2.5)

E[B(t,T)] = B(t,T) (2.6)

if B(t,T) denotes the price at time ¢ of a pure discount bond maturing at time 7.

Garcia, Luger and Renault (2000) document the particular case where
Qms(t,T) = 1 and B(t,T) = [1:Z! B(r,7 + 1). In this case, the option price
(2.3) is nothing but the conditional expectation of the Black-Scholes price, where
the expectation is computed with respect to the joint probability distribution of
the rolling-over interest rate 7 p = — >.._, log B(7,7 4+ 1) and the cumulated
volatility o,r. This framework nests three well-known models. First, the most
basic ones, the Black and Scholes (1973) and Merton (1973) formulas, when in-
terest rates and volatility are deterministic. Second, the Hull and White (1987)
stochastic volatility extension, since 7@} = Var [log ‘?9—"‘: Ut } corresponds to the in-
tegrated volatility ftT o2du in the Hull and White continuous-time setting. Third,

the formula allows for stochastic interest rates as in Turnbull and Milne (1991)
and Amin and Jarrow (1992).



It is often argued that the interest rate risk can be neglected for pricing rel-
atively short maturity options written on a stock. Whatever the argument may
be, the simple version of (2.3) where B(t,T) = exp[—T7¢ 7| is computed with a
rolling-over interest rate 7, v considered as known at time ¢, is sufficient to get a
fruitful extension of the standard Black and Scholes and Hull and White settings.

In this case, formula (2.3) can be rewritten:

T = EtBSK[gt,T,Et,T] (27)

where gt,T = S51Qms(t,T) and BSk[S, o] denotes the Black-Scholes option price
for a volatility parameter o and a current price of the underlying asset equal to S
(for a given strike price K and a maturity (7' —t) ). Notice that (2.7) generalizes
the Hull and White option pricing formula in two respects. First, the implicit
stock price value gt,T does not coincide with the current value S;. It is generally
random and only its conditional expectation given current information coincides
with S; (E; §t,T = S;). Renault (1997) has documented the effect of a fixed
implicit value S} different from S; plugged in the Hull and White option pricing
formula. It is shown that, while the standard Hull and White implies a symmetric
volatility smile when Black and Scholes volatility is plotted as a function of the
log-strike price (Renault and Touzi (1996)), a small discrepancy between S; and
Sy (]S; — Si| = 1073S;) introduces a dramatic skewness in the smile, opening the
door to smirks and frowns as inferred more frequently from market data. As far as
the option pricing formula (2.7) is concerned, the convexity? of the Black-Scholes

option price with respect to the underlying asset price will generally imply:

EBSk[Sir, 7010 = E:BSk[SF(K), 7 1) (2.8)
with: S7(K) = E,S;(K) # Sy = E; Sip.

The second extension regards the risk neutral measure versus the objective
probability measure. While the Hull and White option pricing model leads to a
conditional expectation of the Black-Scholes price with respect to the risk neutral
probability distribution of the integrated volatility o, the probability distrib-

utions and the expectations in this paper are under the true probability mea-

*Note that if ;7 were not random, the Jensen inequality applied to the convex increasing
function BS(.,7,r) would imply that: S} (K) > S;. However the random nature of &; -, which

may be correlated with gt,T may even reverse the inequality between S; and Sy (K).



sure (and not the equivalent martingale measure). As a by-product of the direct
specification of the bivariate stochastic process which governs the SDF and the
underlying asset price we get a pricing of volatility risk. The market price of
this volatility risk is captured by Qms(t, ) which makes the difference between
§t7T and S;. As already noticed by Amin and Ng (1993), even when the interest
rate risk is neglected, preference parameters appear in the option pricing formula
through the term Zit 41 Omsr I the SDF. They are not hidden in the stock price
(and the bond price) when the stock pricing formula (2.5) does not imply that
Qms(t,T) = 1, that is: gt,T = S;. Garcia, Luger and Renault (2000) have shown
that the difference between §t,T and S; (the fact that Q,,5(t,T") is a nondegenerate
random variable) is produced by several kinds of leverage effects, that is instan-
taneous causality relationships between state variables and asset prices. They
document the various smile asymmetries which may result from these effects.

In order to draw in this section some empirical implications which are free from
any particular specification of the SDF, we will develop an empirical methodology
which captures the difference between the “implied stock price” S} and its current
value S;. We will address the issue of pricing with a smile, which will be a smirk
when the implied stock price S;(K) does not coincide with S;. In the same way
that standard Hull and White option pricing model may provide a rationale for
using BS implied volatilities (see Renault and Touzi (1996)), the generalized BS
pricing formula (2.7) suggest to define an ad-hoc pricing methodology based on
both BS implied volatility and implied stock price. The following result, proved
in the Appendix, justifies such an approach.

Proposition 2.1. If K; # Ky then the mapping:

S . BSk, (s, 0)
o BSk, (s, 0)
is locally invertible in a neighborhood of (S, o) for any positive S and o.

Then, when one considers at the same date ¢ two option contracts written on
the same asset with two different strike prices, the two option prices, if conformable
to Black and Scholes, allow one to recover simultaneously an implied volatility
parameter and an implied stock price as well. We can therefore build a class of
empirical methodologies first explored by Longstaff (1995), who inverts the Black

and Scholes model to estimate both the implied index value and the implied



volatility. However, his approach for estimating the two parameters consists in
minimizing by grid search the sum of square deviations between the theoretical
and the actual option prices for the set of option prices available each day, since
it is generally not possible to find a single implied index value and volatility
estimate that exactly fit all the call prices. This approach appears too global
to capture not only the well-documented volatility smile but also the index value
smile which both result from (2.7). The implied values for S and o extracted from
(2.7) have two important features. When §t7T = S;, the BS implied volatilities
plotted against the log-strike price have a symmetric U-shaped pattern 5. The BS
implied index S;(K) will depend heavily on K since the degree of convexity of
the BS price with respect to the stock price heavily depends on the moneyness of
the considered option.

The theoretical exploration of these two smiles in the spirit of Renault and
Touzi (1996) is not the purpose of the current paper. Here, we want to explore
the empirical relevance of the following very simple ad-hoc procedure. Faced
with the pitfall that the inversion of a couple of option prices conformable to
proposition 2.1 will generally provide implied values S(Ki, K3) and o(K7, K>)
which both depend upon the particular couple (K7, K») of considered strike prices,
we propose to overcome this difficulty by setting K7 = S, that is one of the two
options is always at the money. This is because it is generally admitted that the
Black-Scholes model performs relatively better for at-the-money options than for
out-of or in-the-money options. Therefore, we proceed with the inversion in two
steps: (i) look for an implied volatility parameter o, such that for K; = S, :
(K1) = BSk, (St; Oimp,e); (i) look for an implied index value S;(K) such that
for Ky = K:

m(Ky) = BSk, (S} (K), Cimpyt)- (2.9)

In other words, we choose the standard reference of the BS implied volatility
parameter for the at-the-money option and we complete this information by an
implied index value S} (K) which depends upon the moneyness. To show that the
generalized BS formula in (2.3) is relevant for pricing options, we will show that
this ad-hoc procedure applied for any strike price K works better than the straw-

man defined in Dumas, Fleming and Whaley (1998), which consists in smoothing

®See Renault and Touzi (1996) and Renault (1997). The latter provides a simplified proof

which makes more explicit the role of Jensen’s inequality.



the implied volatility across exercise prices. We will therefore compare in the next

subsection the prediction errors of the pricing model using both implied volatility

and stock price BS(S; ' 1, Oimpyt), Where §§‘+1 = Spy1 X Széf(), to the pricing errors

obtained with the standard way used by market makers to price options with the

volatility smile.

2.3. Pricing with an Implied Index Call Options on the S&P 500

From daily S&P 500 option price data, we first compute averaged Black and Sc-
holes implied volatilities for three classes of maturities (less than 60 days, between
60 days and 180 days, more than 180 days) and six classes of sufficiently liquid
moneynesses r; = Log%,i =1t 6 (r17 < 29 < x3--- < zg). Then we use
at-the-money BS implied volatilities in each class of maturity for extracting daily
implied index values S*(K;), i = 1 to 6 by inversion of the Black-Scholes price®
BS(S, 0imp,) With respect to the spot value of the index S. We gauge the out-of-
sample pricing performance of our ad-hoc GBS-based procedure by comparing it
to the usual implied volatility procedure (the strawman).

The implied volatility performance is summarized in Tables I and III, corre-
sponding respectively to absolute and relative pricing errors. In each case, the
pricing error corresponds to the discrepancy between the observed price and the
BS price computed with the observed spot value of the index and the BS implied
volatility computed the day before in the same class of moneyness and maturity.

The ad-hoc GBS-based procedure is assessed through pricing errors provided
in Tables IT and IV. These pricing errors are then computed from the difference
between the observed price and the BS price obtained with the BS at-the-money
implied volatility (extracted the day before in the same class of maturity) and the
implied index value N;‘ .1 for the relevant class of both moneyness and maturity,
based on S;(K) also extracted the day before.

The comparison of Tables I and II shows without any doubt that the pricing
performance of the ad-hoc GBS procedure is better than the strawman for in-
the-money options (columns i = 4,5,6 corresponding respectively to the largest

moneynesses T4 < Ts < Zg). The dominance is almost without exceptions (less

61n all this section, Black and Scholes option pricing formulas are computed with the value
of the continuous time interest rate observed at the date of pricing, as if the term structure was

flat and deterministic.
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than 3 per cent of the cases) for short maturity options and remains true to a large
extent for longer-term options, particularly if we forget the year 1997 which is very
special and leads to a bad performance of any standard option pricing model. Let
us notice that it is not surprising that, even if dominated, the BS model performs
relatively better for longer-term options. When the time to maturity (T-t) is
large, a law-of-large-number effect pushes the random variables @, (t,7) and
o r towards constant values (corresponding to unconditional expectations of the
stochastic moments p,,, iy, 02,02 and 0,,,). Therefore, the BS model becomes
more and more correct.

Notice also that the GBS pricing formula performs better than the BS implied
volatility procedure for slightly out-of-the-money options (i = 2) in 70% of the
cases. Actually the only cases where the strawman wins the competition is for
deep out-of-the-money options (i = 1) while the performance of the two models
is similar for near-the-money options (i = 3). These two cases do not invalidate
the GBS approach. We have applied the GBS method in an ad-hoc way which
uses BS implied volatilities computed at the money, because it is known that the
BS model performs quite well for at-the-money options. Indeed, we have just
seen that this approach is fruitful for a number of categories of options. However,
it should be emphasized that this method does not draw advantage of the well-
documented volatility smile. If we do this by extracting implied index values out
of the money by inversion of the function BS (-, oim,) where o4y, correspond to
BS implied volatilities which were also computed out of the money, we are able
to do better than the strawman for deep out-the-money options as well. This can
be checked without ambiguity by comparing column 1 of Table V with the same
column in Table I.

The comparison of relative pricing errors (Tables II, IV and VI) leads to the
same type of conclusion. In terms of the sign of the errors, notice that, while BS
generally underprices the option contracts, it is less often the case with GBS, in
particular for deep in-the-money options. For these options, the strawman often
leads to a significant pricing error of several percentage points while the GBS
performance is ten times better.

To conclude, let us stress that in order to run a fair competition between BS
and GBS, we have in Tables I to IV only compared the pricing model BS [S}(K), Timp,]
to the standard practitioners’ method of pricing with the volatility smile. This

does not mean that we recommend to forget about the volatility smile. On the

11



contrary, we have shown that we can do even better for deep out-of the money
options by using simultaneously both the volatility smile and the implied index
value. But the main message remains that, even if one wants to follow the Du-
mas, Fleming and Whaley (1998) recommendation that “simpler is better”, the
simple information provided by the implied index value (the mapping K — S;)
is richer than the most usual volatility smile (the mapping K — o), except for
deep out-of-the money options.

In our opinion, this opens the door to more sophisticated uses of our generalized
Black and Scholes formula, which would be able to draw advantage simultaneously
of the volatility smile and the implied index value as well. An ad-hoc way to do
this would be to use the result of proposition 2.1 to invert couples of option prices
which are symmetric with respect to the money. In other words, our implied
index value information will be used as a complement to a postulated symmetric
volatility smile, in order to capture its well-documented asymmetries. We have
run some experiments with this methodology and obtained improvements of the
basic performance of Tables IT and IV similar to the ones documented in Tables V
and VI. However, the results may be flawed by the empirical difficulty of finding
couples of option contracts which are exactly symmetric with respect to the money.

The previous methods remain ad-hoc procedures. Theoretically speaking, the
most efficient use of our GBS model to capture asymmetric volatility smiles should
go through the exact option pricing formula (2.3) applied with well-calibrated
preference parameters. We will document in Section 3 what could be the gain of
using such a sophisticated option pricing methodology with respect to the standard

ones.

3. A Stochastic Discount Factor Based on Recursive Utility

Our results until now have been independent of any specification of preferences.
Yet, as we mentioned before, our setting makes the option pricing function depen-
dent of preference parameters, which means that option prices can be informative
about these parameters. In this section, we explore the latter issue by using both
simulations and the same S&P 500 call data as in the last section. We choose
the recursive utility framework of Epstein and Zin (1989). The advantage of this
particular utility specification is that we can investigate time separability of pref-

erences in the context of option data since until now this issue has been looked at
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mainly with stock and bond returns. As we will see, an important result of the
simulations is that option prices are much more informative than stock returns
about preference parameters.

In a recursive utility model, the stochastic discount factor is given by:
Chin v(p—1) .
B (Tt M,y R

with 8 = 1/(1 + 6), 6 > 0. In (3.1) the expectation is taken conditional on

information available at time ¢, M;,; is the return on the market portfolio, and

E, =1 (3.1)

R;i+1 is the return on asset j. The equation in (3.1) defines the relationship
between aggregate consumption and rates of return on any asset in the economy
that must hold in equilibrium. When future consumption is deterministic, the
Epstein and Zin recursive utility function specializes to an intertemporal constant
elasticity of substitution utility function with elasticity of substitution 1/(1 — p)
and rate of time preference 6. Thus the parameter p is interpreted as reflecting
intertemporal substitution. Epstein and Zin (1989) show that oo = vp may be
interpreted as a relative risk aversion parameter with the degree of risk aversion
increasing as « falls (a < 1).

When p = 1, the equation in (3.1) yields the market-based CAPM. Due to the
perfect intertemporal substitutability of consumption, the market return becomes
the only factor by which asset payoffs are discounted. This is also the case when
preferences towards risk are captured by a logarithmic utility function (y = 0). At
the other extreme, when v = 1 asset payoffs are discounted only by consumption
growth as in the consumption CAPM. For all other values of v and p, both con-
sumption growth and the market return enter the stochastic discount factor. In
this framework the representative agent has preferences, in the Kreps and Porteus
(1978) sense, for early resolution of uncertainty when a < p, preferences for late

resolution when a > p, and is indifferent when a = p (the expected utility case).

3.1. The Generalized Black and Scholes Option Pricing Model with

recursive utility
The equilibrium price of the market portfolio is given by PM = \(U¥)C;, where
the payoff on the market portfolio is equal to aggregate consumption Cj. As for
the stock, in equilibrium its price is given by S; = ¢(Uf)D; where D, is the

corresponding dividend payment. The price-earning ratios A\(U}) and ¢(U}) are
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functions of an exogenous state variable Uy, whose history up to time ¢ we denote
Uf. This variable can be thought of as reflecting the state of the economy in
the sense that conditional on U} the growth rates of economic fundamentals are
independent and identically distributed. Under some regularity assumptions, it
can be shown [see Garcia and Renault (1998)] that these price-earning ratios are

determined as a fixed point solution of:

o= (%) owiy 1 o 32
and
ot = | (%) (AN e 1 n 2t 1| e

The dynamic behavior of the market portfolio and stock price are entirely de-
termined by the distribution of (X, Y;, U;) where we defined X; = log(C;/C;_1)
and Y; = log(D;/ D, 1) as the growth rates of consumption and dividends respec-

tively. We assume that

Xt t mxt > { 0§( OXxvyt H
U~ N , t 3.4
(Yt)' : K mye )| oxve ot o0

2

where mx, myt, 0%, 0%, Oxy: are fixed functions my, my, o2

, 0 and o4y of the
current (U;) and lagged (U;_) state variables.

In order to price a European call option maturing at time 7T, substitute its
payoff max(0, Sy — K) into the Euler condition in (3.1). One then arrives at the

following generalized Black-Scholes pricing formula:’

T KB, T
T B Qur (6 T)o(dy) - B2E D g (35
St St
where:
Log [BBeP] 1 & 4
"= T (27 ;1/2 + 5( > oy handdy =di — () o},)2
r=t+19Yr r=t+1 T=t+1

7Of course, this formula and the role of the quantities Qxy and B can be deduced from
the GBS formula (2.3) with the similar quantities Q,,s and B defined in (2.4). However, for
expositional simplicity, we present a set of self-contained comments about (3.5), (3.6) and (3.7).

See Garcia and Renault (1998) for a detailed derivation of the formula.

14



and:

B(t,T) = 3" 94T () exp((a — 1) Z mxr + %(a —1)? Z o’xr),  (3.6)

’r:t—|—1 T=t+1

T+1 —1
with: af () = [[1_} [%r , and

Qxv(t,T) = B(t, T)b] exp((a—1) Y aXyT)E[%WlT]. (3.7)

T=t+1

She T — 117 (L+eUith)
with: bt = HT=t+1 TUII.) N
The quantities Q xy (¢t,T) and B(t, T') appearing in the pricing formula (3.5) are
particularly determinant. The first, Qxy (¢, T') is related to the time ¢ equilibrium
stock price S; and satisfies

EfQxy(t,T)] =1 (3.8)

Notice that Qxy (t,T') can be factorized as Qxy (t, T) = ', @xy (7, 7+1). When
Qxy (T, 7+ 1) is known at time 7, we have that Qxy(t,T) = 1 by (3.8) and by
the law of iterated expectations. Garcia, Luger and Renault (2000) show that this
will be the case when there is absence of a generalized leverage effect in the sense
that the joint distribution of consumption and dividend growth rates does not
depend on the contemporaneous value of the state variable. The random variable

B(t,T) determines the equilibrium price of the discount bond B(t,T) as
B(t.T) = E[B(t,T)] (3.9)

Here also we have a factorization B(t,T) = | B(r,7 + 1) such that when

B(7,7+1) is known one period in advance the price of the discount bond becomes
B(t,T) = E; [['Z] B(r,7 +1). Such predictability obtains when there is absence
of a leverage effect through the market risk, that is when the marginal distribution
of the consumption growth rate does not depend on the contemporaneous value of
the state variable. Another case of interest occurs when mx; and 0%, are constant,
and thus A\(U}) in turn is constant, such that the consumption growth rates X;
are iid and the discount factor B(¢,T) is deterministic.
The simple gross return on stocks is given by:
_ S+ Dy (pt+1) Dy

- (3.10)

R
' St—1 Vi1 Dy

15



From a comparison of the option pricing formula (3.5) and the stock return in
(3.10) we can see intuitively why option prices might be more informative than
stock prices about the preference parameters. In (3.10) the preference parameters
only appear indirectly through the stock price-earnings ratio, which in equilibrium
are determined as solution of the Euler conditions in (3.3). On the other hand this
ratio also appears in the option price through the term Q xy (¢,7). This term in
(3.5) along with B (t,T) depends directly on the preference parameters in addition
to the price-earnings ratios for the stock and the market portfolio.

To make the model estimable, we choose a Markov-chain setup for the state
variables. The process describing the joint evolution of X; and Y; is parameterized

as follows:

Xt = mx(Ut)+0x(Ut)€Xt
Y, = my(Up) + oy (Up)eye

The vector (exy,ey) follows a standard bivariate normal distribution with corre-
lation coefficient pyy and serial independence. The time-varying mean and vari-
ance parameters are a function of the state variable process {U;}, which is assumed
to be a two-state discrete first-order Markov chain. The transition probabilities
between the two states are given by p;; = Pr(U, = j|Ui—y = 1) for 4,5 = 1,2.
The unconditional probability of being in state 1 is denoted m; and is equal to
(1 —p22)/(2 — pr1-p22) and mp = 1 — 7.

Our first goal is to compare the informational content of stock returns and
option prices with respect to the preference parameters. That is, we wish to see
from which series can one better infer the values of the preference parameters of
the structural model. In order to make a fair comparison the same estimation
method should be applied in both cases. To start the estimation in the simplest
way, we apply an exact method of moments to recover jointly the three preference
parameters (3, p and «. It should be noticed that option prices allow for more
flexibility in the sense that we observe more than one option at each date, but
only one price for the underlying stock.

The moments for the stock returns that we consider are:

2 2
w;+1
E[Tt] = Z Zﬂ'ipij (10g Jgp + myj) y (311)

i=1 j=1 i
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2 2 2
1 41
Var(ry Z Z TiDij [(log ) + 2my; <log ¥j ) + m%j + O'QY]- _E[Tt]Z,
i=1 j=1 i i
(3.12)
Covlre, e 1] (3.13)
2 2 2 2
p;+1 +1
=52 S | (e 2 ) ot || (10g P ) i |~
i=1 j=1 k=1 Pi Yi

Let Cy(U; = 4, k,7) denote the ratio 7t where 7 is the price of a European call
option as given by the generalized Black—Scholes pricing formula (3.5) when state
i is operative at time ¢ and the option’s moneyness is equal to k = S;/K and time
to maturity is 7 = (T'—t). Given the nonstationarity of S; it is not surprising that
option prices will also be nonstationary since S; is one of the arguments of the
option pricing formula. However the variable S;/K is stationary as strike prices
bracket the underlying asset price. This suggests estimating the parameters of
interest by matching the moments of Cy(U; = i, k, 7). For instance, the following

moment:

2
E [%} - ;mCt(Ut — ik, ) (3.14)

forms the basis for the method of moments applied to option prices of different
moneynesses and maturities. Insofar as we consider observed option prices for a
given set of values of the moneyness (possible values of S;/K), option prices are
deterministic functions of the current state variable. They are therefore much
less random than stock prices which involve at each date the noise cy; of the
dividend process. Therefore, in order to make the comparison between estimation
results based on option prices and those based on stock returns as fair as possible,
we added noise to the ratio log(S;/K) as log(S;/K) + oy(U;)s; where g, is a
standard normal white noise. Note that the added error term is proportional to
the state-contingent standard error of the dividend process. One may also consider
higher moments for option prices. We also compute the moments based on the
mean, variance and covariance of a particular option price (normalized by a given

moneyness for stationarity).
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In order to estimate simultaneously all the structural parameters we shall
consider combining moment conditions from the stock returns and option price
series. In particular this will allow us to infer the values of the mean and variance
of consumption growth from financial market data. We also need to implicitly

estimate the A\ and ¢ parameters from Fuler equations.

3.2. Simulation results

In this section we compare the empirical performances of the estimates based on
option prices and on stock returns. The experiment was carried out as follows. For
given values (/3,7, a) characterizing preferences and (p11, p22, mx1, Mx2, 0 x1, 0 x2,
my1, My1,0y1,Oya, Pxy) describing the endowment process, we first obtain the
equilibrium values of the price-dividend ratios (A1, A2, 1, ¢5) by numerically solv-

ing the following set of simultaneous equations:

2
1
)\Z = E Dij |:ﬁ'7 exp {Ckaj + E(Ozaxj)2} ()\1 + 1)'7:|
Jj=1

2
Yi = Z Pij
j=1

A1\
P45 (252) e

where
1
A; = exp {(a —1)mx; + my; + 3 (o — 1)20§(j + J%/j +2(a — 1)pXY0Xjayj)}

The stock returns {r;,t = 1,..., N} are obtained as follows

o+ 1

Pr—1

with Y; = log given by

Dy

Dy_1
Yy = my(Up) + oyi(Up)eyy

where ey; ~ N(0,1). The process {Uy,t = 1,...,T} is a first-order Markov chain

such that U; takes values in the set {1,2} with Pr(U; = j) = S0, pi; Pr(Us 1 = 1)

and transition probability p;; = Pr(U; = j|U;—1 = ¢). For each path of the state

variable Uy from time 1 through 7" normalized option prices Cy(U; = i, k,T) given

that state ¢ is operative at time ¢, for a given moneyness k = S;/K and time to
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maturity 7 = (T — t) are generated according to the generalized Black-Scholes
pricing formula given in (3.5) and division by the strike price.

For reasons explained in the previous section the option-based series of interest
is {Cy(U; = i,k,7),t = 1,...,T} where the option prices are divided by their strike
price. This transformation results in a binary process in the sense that for given
values of k and 7 the transformed option prices take one of two values depending
on which state is operative at time t. Estimating parameters on the basis of
this simulated series would have resulted in a perfect fit as the generalized option
pricing model has more parameters that there are sources of randomness driving
the transformed option price series. However, as explained above, we added noise
to the ratio log(S;/K) as log(S;/K)+ oy (U)e: where £ is an i.i.d N(0, 1) process.
The additional error term makes for a fair comparison of the informational content
of stock returns vis-a-vis option prices.

We investigate the properties of the estimators for the preference parameters
while holding the other parameters of the model fixed at their true values®. In
tables VII, VIII and IX we report the results of this simulation experiment in
terms of mean, median, standard error and root mean square error for the three
parameters. We report the results for the method-of-moments estimators based
on option prices (from a time series and an across-moneyness perspective), stock
returns, and price-dividend ratio’ respectively. First, we notice that the estimators
based on stock returns are more biased than the estimators based on moment
conditions for options. It is the case even if we use comparable moments computed
on the time series of one particular option. The bias is more pronounced for the
parameters p and « than for the subjective discount factor 3. A possible reason
for this finite sample bias could be the nonlinearity in parameters present in the

model'’. It is possible that the nonlinear nature of the option payoffs helps in this

8The values of the endowment process are similar to those estimated from actual data by
Bonomo and Garcia (1996). Other values (such as the ones used in David and Veronesi ( 1999))

yield the same conclusions.

9The informational content of price-dividend ratios was suggested by Bansal and Lundblad

(1999).
10This is not a numerical issue. In fact, we gave an advantage to the stock returns conditions

in the sense that we started the optimization at the true parameter values, while for the options

the initial values were taken in a random neighborhood of the true values.
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regard. Improvements in terms of RMSE can be obtained in two directions, one
for options, the other for the stock.

First, by using a set of three options with different moneyness, we can see that
the RMSE is reduced at least for p and a. The main difference in the information
base of the sets of estimators is that in one case we use a time series of a unique
asset, while in the other we use a panel of option prices. To estimate well the
preference parameters, it is necessary to recover well the stochastic discount fac-

tort!

or the underlying risk neutral probability distribution. This is easier with
a panel of option prices than with a time series on the underlying asset or one
particular option. The second direction of improvement is to use moments on the
price-dividend ratio of the stock instead of stock returns to estimate the parame-
ters. The RMSE is reduced for the three parameters compared to the estimates
obtained with the stock returns. It should be emphasized that in the true model
used to simulate the prices, the price-dividend ratio takes two values, one for each
state, as it is the case for option prices. However the RMSESs remain higher than
the RMSEs obtained with option prices.

These simulation results tell us that using a set of option prices allows us to
recover well the preference parameters if the formula is not preference free. It
therefore suggests that option price data could be better to test different models
of preferences than bond and stock returns as it is usually done. Additionally,
price-dividend ratios might also be more informative than stock returns.

In table X, we proceed to estimate jointly all the parameters of the model,
again with an exact method of moments. We use enough moment conditions from
option prices and stock returns to estimate the 12 parameters of interest. We get
9 moment conditions on options by considering 3 different moneynesses (1.1, 1
and 0.9) and time to maturity (1, 2 and 3 periods) and three moment conditions
from the stock returns (mean, variance and covariance). The results indicate that
apart from the means of the consumption process the parameters are generally

estimated without a large bias.

1 is a risk aversion parameter while 1/(1 — p) is an intertemporal elasticity of substitution.

However, as acknowledged by Epstein and Zin (1989), this interpretation should be mitigated
since the position of p with respect to a determines the preference vis-a-vis time of resolution

of uncertainty. In this respect, p is also a risk parameter.
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3.3. Is There Evidence of Preference Parameters in S&P 500 Option

Prices?

The Monte Carlo experiments of section 3.2 lay the ground for a general estimation
of the model with option price data. We will use daily S&P 500 option price data
to estimate the parameters and assess the out-of-sample pricing performance of
the model and its main competitors. We used the following method of estimation.
At time t, the GBS model is estimated by the method of moments using the
moments defined in the simulation study. A three-month window prior to the
time of estimation is used to compute the empirical moments. To make sure we
explore well the preference parameter space in the optimization, we set a grid of
initial values for v and p as follows: p= -0.5, -1, -2 -4 -8 and v = 0.01, 0.05,
0.1, 0.5, 1.0. Overall, we have 25 pairs of starting values which correspond to
various degrees of risk aversion and elasticity of intertemporal substitution. The
model with the set of initial values that yields the lowest average absolute pricing
error over the following week (¢, + 5) is retained for pricing over the next week
(t + 5,t + 10). Before pricing, the model is reestimated using information up to
time ¢ + 5. The same strategy is also applied to the expected utility model where
v is constrained to a value of 1. In this case only the elements of the grid for
p are relevant. The initial values for all the other parameters are the same for
both of these models as well as for the preference-free model'>. We conduct this
experiment for five years, from 1991 to 1995.

Using the estimates obtained each week we forecast the prices for all the options
of the following week separated in long, medium and short maturities and in dif-
ferent moneyness categories. We average the weekly forecast errors over each year
for the corresponding categories and compare the performance of three models:
the most general option model for the non-separable recursive utility model given
by formula (3.5), the expected utility model obtained by setting - equal to one in
(3.5) to judge the importance of non-separabilities, and finally the Hull and White

12We only conduct a grid search over part of the preference parameter space since we want to
illustrate the relative importance of the preference parameters in option pricing at least compared
to the expected utility model and the preference-free model & la HW. Further reductions in the
absolute pricing errors could be achieved by a more extensive search over the space of preference
parameters and those associated with the endowment processes. However, given our estimation

and forecasting procedure, the computational cost would be too high.
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stochastic volatility model which results from (3.5) when Qxy(¢,7) = 1 to gauge
the importance of preferences for option prices. It should be emphasized that the
objective of this forecasting exercise is to assess the relative performance of the
three models and not to select a model that will be implementable in practice. The
use of unconditional moments is not appropriate for this purpose. Conditional in-
formation needs to be incorporated in some way to hope achieving performances
that are comparable to the ad-hoc models explored in the previous section. We
will explore the added forecasting value of this conditioning information in future
research.

The results are clear. For short and medium-term options, GBS does better
that the specification where v is equal to one which is turn is better than the Hull
and White specification. Compared to Hull and White, the relative error for GBS
is reduced from 20 to 50 per cent for short-term and medium-term options. This
shows that preferences are important in pricing options on the index. Moreover,
the data seem to indicate that preferences are of the non-separable type since the
restricted value of v generally increases the relative error. Of course, as we advance
in maturity, the relative error falls since the smile effect flattens and pricing tends
to approach Black-Scholes. For long-term options, where the smile is the flattest,
the differences between the three models are small. These results parallel the
simulation results reported in Garcia, Luger and Renault (2000) about the smile.
First, it was shown that a non-preference free framework was able to reproduce
the various asymmetries observed in the implied volatility curve inferred from
option price data. Second, the parameter v was perceived to be more important
than the risk aversion parameter « in calibrating the smile.

Table XII reports the average values of the preference parameters that we
obtained over the five years. These values imply a coefficient of relative risk
aversion of 0.5688 on average and a mean value of 0.7363 for the elasticity of
intertemporal substitution. As the standard errors indicate the values obtained
are not very variable. Not only these values imply considerable differences in terms
of pricing errors compared with the expected utility model, but they also appear
much more reasonable than the values obtained with the latter model. Indeed,
when the parameter v is constrained to be equal to 1, we obtain a high average
value of around 8 for the coefficient of relative risk aversion and a very low value
for 3. Relaxing this constraint results in an elasticity of intertemporal substitution

lower than the inverse of the relative risk aversion coefficient, in accordance with
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the generally accepted stylized fact.
In terms of state variables we find average values of 0.80 and 0.40 for the
transition probabilities in state 1 and 2 respectively. The first state is a state with

a low volatility of dividends.

4. Conclusion

The main message of this paper is that, even though the strawman of BS implied
volatilities has proved its efficiency and robustness among practitioners for a while,
it should not be considered as impossible to improve upon. To support this claim,
we provide two pieces of empirical evidence which, in our opinion, are all the
more convincing that they are independent and reinforce each other. On the one
hand, we show that a very general option pricing model only restricted by an
assumption of joint conditional log-normality of returns and stochastic discount
factor (SDF), given a set of state variables, leads to out-of-sample pricing errors
smaller than the strawman, without any increase in complexity. This simplicity
results from an ad-hoc procedure, comparable in spirit with standard pricing
with a volatility smile. Moreover, it opens the door for more flexible empirical
procedures, which would adjust the skewness of the volatility smile through an
implied spot value. On the other hand, we also assess option pricing errors which
result from a fully specified equilibrium model which corresponds to a specific
SDF. We check that the performance of this model is significantly better than
a standard Hull and White option pricing, which neglects the price of volatility
risk. In this respect, recursive preferences which disentangle the risk aversion and
the elasticity of intertemporal substitution parameters appear to be particularly
relevant for option pricing. Conversely, option price data are shown to be very
informative about these preference parameters.

Of course, a great deal of additional work remains to be done before claiming
that equilibrium models including explicitly some preference parameters should
be used for option pricing in practice. However, we consider that both our Monte
Carlo experiments and the estimation performed with S&P 500 option price data
prove without ambiguity that preference parameters are important in option pric-
ing. Among the required extensions, one should of course discuss the specifications
of both preferences and the distribution of the state variables. Finally, an assess-

ment of hedging performance is also needed.
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Appendix

We have to show that the Jacobian matrix of the mapping of interest is non-
singular. But the gradient of the mapping: (S,0) — BSk(S, o) is the vector of
the coefficients delta and vega of the call, that is (see e.g. Hull (1993), pages 314
and 329):

[¢(dKk), SivVT — tp(di)] (A1)

where ¢(d) = ¢'(d) is the density function of the standard normal and:
dK :log% +O'\/T*t.
In other words, we have to show that for K; # Ks, the two vectors:

[¢(dK1), StVT — tp(dger)]
[6(dk2), SeVT — to(dis)] (A2)

are linearly independent, that is:

d d
pldr1) , pldxe) (A3)
¢(dr1) * ¢(dko)
This is a direct consequence of the strict monotonicity of the Mills ratio:
x— f(z) = %.
Actually:

g — P2

since: g(x) = xzd(x) + p(x) > 0, given that: ¢'(z) = ¢(x) > 0 and

[2p(z) + ¢(2)] <0 (Ad)

lim g(2);— 0o = 0.
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Table V

Absolute Pricings Errors - GBS

Table VI

Relative Pricings Errors - GBS

M < 60 M < 60
1 2 3 4 5 6 1 2 3 4 5 6
1988 | 0.8246 0.5587 0.5704 1.0761 1.0833  1.5803 1988 | -0.3573 -0.0715 -0.0534 -0.0053  0.0011  -0.0071
1989 | 0.4232  0.5909  0.5250 0.8010 1.2803 1.6921 1989 | -0.0530 -0.1973 -0.0578  0.0002  -0.0330 -0.0321
1990 | 0.9801 0.5231 0.5702  1.0787 1.2207 1.7706 1990 | -0.3932  -0.0565 -0.0365 -0.0039 -0.0060 -0.0196
1991 | 0.4982 0.4933 0.5188 0.9570 1.2116 1.9602 1991 | -0.0348 -0.0184 -0.0427 -0.0091 -0.0145 -0.0077
1992 ] 0.3002  0.4299 0.4165 0.9030 1.2819  2.5857 1992 | -0.1307 -0.0122 -0.0248 -0.0036 -0.0125 -0.0497
1993 | 0.3639 0.2169 0.4506 0.8516 1.1596  2.3058 1993 0.0663 0.0721  -0.0446 -0.0056 -0.0046 -0.0262
1994 | 0.1995 0.1508  0.2233  0.9080 1.4006  2.0450 1994 0.1508  -0.0110 -0.0090 -0.0008 -0.0177  -0.0097
1995 | 0.1200  0.1957 0.2183  0.9684  1.5541  2.9471 1995 | -0.1043 -0.0585 -0.0122 -0.0024 -0.0117 -0.0139
1996 | 0.3563 0.3634 0.4574 1.7642 1.8595 3.9171 1996 | -0.0015 -0.0363 -0.0185 -0.0053 -0.0015 -0.0086
1997 | 1.2247 1.1614 1.3296 2.8491 3.6307 5.6438 1997 | -0.1064 -0.0494 -0.0476 -0.0072 -0.0040 -0.0067
Mean | 0.5301 0.4684  0.5280 1.2157 1.5682  2.6448 Mean | -0.0964 -0.0439 -0.0347 -0.0043 -0.0071 -0.0182




Tables VII, VIII and IX: Descriptive statistics for the method of moments estimator
of preference parameters. The moments used in the estimation are the mean, the
variance and the autocovariance of the respective series. For options, we also used the

mean of the three options with different moneyness. The true values are p = —10,
a = —5 and B = 0.95 for the preferences and pi11 = 0.9, p2o = 0.6, mx1 = 0.0015,
mxo = —0.0009, gx1 = 0O0x92 = .003, my1 = Myg = 0, Oy1 = 0.02, Oy = 0.12

and py, = 0.6 for the endowment process. The results are reported for options with
maturity of one period . The results are based on 1000 replications of the experiment.

Table VII
Options Prices P «a 16} Options Prices P «@ 16}
(time series) (across moneyness)
Mean -10.1585 -4.6162 0.9445 Mean -10.1421 -4.6770 0.9504
Median -10.2131  -4.7979  0.9445 Median -10.2171  -4.7927  0.9500
Std Err 1.0524 1.8975  0.0093 Std Err 1.0117 1.2921  0.0159
RMSE 1.0638 1.9350 0.0108 RMSE 1.0212 1.3312  0.0159
Table VIII
Stock Returns p «a I6]
Mean -11.0711  -2.4557  0.9950
Median -10.9812  -1.8966  0.9955
Std Err 1.0457 1.6153  0.0035
RMSE 1.4965 3.0134  0.0451
Table IX
Price-dividend ratio p «@ B
Mean -10.5537 -3.5051  0.9501
Median -10.0003 -4.9861 0.9497
Std Err 1.2742 2.1530  0.0017
RMSE 1.3887 2.6202  0.0017
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Table X: Descriptive statistics for the joint estimation of the structural parameters by
the method of moments. The true values are p = —10, @ = —5 and 8 = 0.95 for the
preferences and p11 = 0.9, p22 = 0.6, mx1 = 0.0015, mx2 = —0.0009, o0x1 = o0x2 =
003, my1 = my2 =0, oy1 = 0.02, oy2 = 0.12 and px, = 0.6 for the endowment
process. The results are based on 1000 replications of the experiment.

Table X

B P « P11 P22 Pxy

Mean 0.9164 -10.0517 -4.9728 0.8983 0.5916 0.5954
Median | 0.9504 -9.9903 -5.0177 0.9010 0.5983 0.5997
Std Err | 0.1119 1.4381 1.3672  0.0507 0.0749  0.0980
RMSE | 0.1168 1.4383 1.3667  0.0507 0.0753 0.0981
mxi mxa2 OXx1 my1 Oy1 Oy2

Mean 0.0520 0.0500 0.0068 -0.0780 0.0462 0.1849
Median | 0.0013  -0.0052 0.0031  -0.0088 0.0193 0.1249
Std Err | 1.0176 0.8822 0.0267  0.5529 0.3704 0.2028
RMSE | 1.0183 0.8832 0.0269  0.5581 0.3711 0.2128
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Table XI: Yearly Relative Pricing Errors for Short, Medium and Long-Term Call Op-
tions Averaged Over Moneyness. GBS refers to the generalized Black-Scholes formula
in (3.5);EU to the same formula special case where the parameter v is equal to 1; HW
to the Hull and White formula (special case of (3.5) with Qxy (¢,T) = 1).

Table XI

Short-Term GBS EU HW

1991 (3072) | 0.8165 | 1.0986 | 1.4482
(2834) | 0.9680 | 0.9844 | 1.3366
(2856) | 0.6331 | 0.9526 | 1.1968

1994 (3310) | 0.7796 | 1.0001 | 1.8166
(3967) | 1.4601 | 1.8301 | 2.0499

Medium-Term GBS EU HW
) 0.3916 | 0.5487 | 0.6351
) 0.6815 | 0.7403 | 0.7912
2097) 0.3679 | 0.5814 | 0.9359
)
)

0.5657 | 0.9627 | 1.6389
0.9337 | 1.2140 | 1.1438

Long-Term GBS EU HW

1991 (706) | 0.0075 | 0.1166 | 0.0100
1992 (543) | 0.0005 | 0.0024 | -0.0011
1993 (482) | -0.2818 | -0.1314 | 0.1120
1994 (911) | -0.2617 | -0.1338 | 0.2420
1995 (1053) | 0.1228 | 0.2982 | 0.2359
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Table XII: Means and Standard Errors of Weekly Estimated Preference Parameters
from S&P 500 Option Price Data over the Period 1991-1995

Table XII

GBS Model

p Y B
Mean | -0.3582 | -1.2038 | 0.8889

Std Err | 0.0214 | 0.0735 | 0.0044

Expected Utility Model

P Y B
Mean -7.3728 1 0.5800
Std Err | 1.8005 - 0.0554
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