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RESUME

Dans cet article, nous caractérisons les asymétries observées dans les courbes de
volatilités implicites par la présence d'effets de levier multiples dans un modéle dynamique
stochastique d'évaluation des actifs financiers. La dépendance entre les mouvements de prix
et la volatilité future est introduite par l'intermédiaire d'un ensemble de variables d'état latentes.
Ces variables d'état sont susceptibles de capter non seulement le risque de volatilité et le
risque de taux d'intérét qui peuvent influer sur les prix d'options, mais encore les risques de
corrélation et de saut. L'effet de levier financier traditionnel est produit quant a lui par une
corrélation instantanée entre les variables d'état qui entrent dans le processus de volatilité
stochastiqgue du prix de l'action et le processus du prix de l'action proprement dit. Nous
disposons toutefois d'un cadre plus général dans lequel I'asymétrie des courbes de volatilités
implicites résulte de toute corrélation instantanée entre les variables d'état et soit le rendement
de l'action soit le facteur d'actualisation stochastique. Dans le but de tracer les formes des
courbes de volatilités implicites générées par un modéle avec variables latentes, nous
spécifions un facteur d'actualisation stochastique fondé sur un modéle d'équilibre avec
préférences non séparables dans le temps. Lorsque nous calibrons ce modele avec des
valeurs raisonnables des paramétres, nous reproduisons les diverses formes de courbes de
volatilités implicites qui sont produites a partir des données de prix d'options observées sur le
marché.

Mots clés : évaluation d'options, facteur d'actualisation stochastique, volatilité stochastique,
volatilité implicite de Black-Scholes, effet de sourire, modéle d'équilibre
d'évaluation d'options

ABSTRACT

In this paper, we characterize the asymmetries of the smile through multiple leverage
effects in a stochastic dynamic asset pricing framework. The dependence between price
movements and future volatility is introduced through a set of latent state variables. These
latent variables can capture not only the volatility risk and the interest rate risk which potentially
affect option prices, but also any kind of correlation risk and jump risk. The standard financial
leverage effect is produced by a cross-correlation effect between the state variables which
enter into the stochastic volatility process of the stock price and the stock price process itself.
However, we provide a more general framework where asymmetric implied volatility curves
result from any source of instantaneous correlation between the state variables and either the
return on the stock or the stochastic discount factor. In order to draw the shapes of the implied
volatility curves generated by a model with latent variables, we specify an equilibrium-based
stochastic discount factor with time non-separable preferences. When we calibrate this model
to empirically reasonable values of the parameters, we are able to reproduce the various types
of implied volatility curves inferred from option market data.

Key words : option pricing, stochastic discount factor, stochastic volatility, Black-Scholes
implied volatility, smile effect, equilibrium option pricing



1. Introduction

In the empirical option pricing literature, departures from the Black and Scholes
(1973) (BS) model are often characterized by an implied volatility curve, whereby
the volatility extracted from the BS option pricing formula given the observed
option price is graphed against the moneyness of the option. The empirical biases
of the BS model have been dubbed the smile effect in reference to a symmetric
implied volatility curve, but numerous distorted smiles in the shape of smirks or
frowns are inferred more frequently from market data. In Figure 1, we graph
several volatility curves for options on the S&P 500 index on selected dates to
reflect the types of shapes that can be observed most frequently.

A stochastic volatility model as in Hull and White (1987) produces a symmetric
smile when the returns innovations and the volatility are uncorrelated. With
stochastic volatility, the price of the option is expressed as an expectation of
the BS price, where the expectation is taken with respect to the distribution of
the heterogeneous stochastic volatility factor. The symmetric volatility smile is
created by a related Jensen effect (see Renault, 1997 and Renault and Touzi,
1996).

Asymmetric smiles can therefore be potentially explained by an instantaneous
correlation between returns and volatility. In Black (1976), an inverse relationship
between the level of equity prices and the instantaneous conditional volatility is
put forward for individual firms. This inverse relationship is explained by financial
leverage. A drop in the price of the stock increases the debt-to-equity ratio and
therefore the risk of the firm, which translates into a higher volatility of the stock.
Nelson (1991) shows that such a negative correlation exists also for broad market
indices. The correlation is still called a leverage effect, but explanations are given
in terms of time-varying risk premia and volatility feedback (see Campbell and
Hentschel, 1992, among others). If volatility risk is priced, an anticipated increase
in volatility raises the discount rate of future expected dividends and lowers the
present equity price. From a theoretical perspective, Platen and Schweizer (1998)
explain the asymmetric shape of the smile by developing a model in which the
diffusion process of the stock price incorporates the technical demand induced by

hedging strategies'. David and Veronesi (1999) propose an incomplete information

'Tn Grossman and Zhou (1996), an equilibrium model of risk sharing between portfolio in-

surers and investors generates a negatively skewed smile.



model where investors’ uncertainty explains the intertemporal variation in the
slope and curvature of implied volatility curves.

To be able to put forward the asymmetric deformations of the smile, we first
state necessary and sufficient conditions for symmetry in a general asset pricing
setting. These characterizations are given in terms of the option pricing func-
tion or, alternatively, through the skewness of the pricing probability measure.
We propose a generalized option pricing formula based on a stochastic discount
factor containing state variables. As special cases of our formula we obtain the
BS formula, the Hull and White (1987) and Bailey and Stulz (1989) stochastic
volatility option pricing formulas, as well as the Merton (1973), Turnbull and
Milne (1991), and Amin and Jarrow (1992) stochastic interest rate option pricing
formulas for equity options.

This extended option pricing framework is motivated by the vast empirical
literature aimed at finding option pricing models that will reproduce the cross-
sectional patterns and the dynamics of implied volatilities. In the class of deter-
ministic volatility models?, the local volatility of the underlying asset is a known
function of time and of the path and level of the underlying asset price. However,
Dumas, Fleming and Whaley (1998) show that deterministic volatility models
overfit the smile in sample and loose any predictive power out of sample. Other
evidence against the one-dimensional diffusion model can be found in Bakshi,
Cao, Chen (2000). They show that call prices often go down when the underlying
price goes up and that call prices are not perfectly correlated with each other and
the underlying asset. Buraschi and Jackwerth (1997) bring further evidence that
deterministic volatility models are not consistent with observed option prices and
that stochastic volatility models are more likely to explain the smile.

The main stochastic volatility models that have been submitted to empirical
testing are variants of the two-dimensional diffusion models in stock returns and
volatility such as in Heston (1993). Although these models produce patterns qual-
itatively similar to some violations, Bakshi, Cao and Chen (1997), Bates (1996)
and Chernov and Ghysels (1999) provide evidence against the stochastic volatil-
ity model of Heston (1993). Multi-factor volatility models as in Bates (1997) and

2These models include the constant elasticity of variance model of Cox and Ross (1976),
the implied binomial tree approach of Rubinstein (1994), the deterministic volatility models of
Dupire (1994) and Derman and Kani (1994), and the Kernel approach of Ait-Sahalia and Lo
(1998).



Gallant, Hsu, Tauchen (1999) do not improve performance significantly. The main
conclusion is that an extremely high volatility of volatility is necessary to gener-
ate leptokurtosis of the magnitude consistent with the volatility smirks. Das and
Sundaram (1999) confirm that stochastic volatility models are not capable of gen-
erating high levels of skewness and kurtosis at short maturities under reasonable
parameterizations.

Jump-diffusion models can generate realistic implied volatility smiles at short
maturities (see Bates, 1997, Bakshi, Cao and Chen, 1997, Andersen, Benzoni and
Lund, 1998), but Das and Sundaram (1999) show that they cannot reproduce the
smiles at long horizons. Pan (1999) examines joint time series data on spot and
option prices on the S&P 500 and provides evidence of a jump risk premium that
responds quickly to market volatility and is important in explaining the volatil-
ity smirks. There remains however some misspecifications and some suggestions
regarding the inclusion of jumps in the volatility are made.

The conclusion of this empirical literature is that important features for re-
producing the cross-sectional patterns and the dynamics of implied volatilities are
jumps in both returns and volatility, as well as a correlation between the jumps
in returns and volatility. To illustrate how our option pricing formula can incor-
porate these features, we specialize our latent state variables to a discrete-state
Markov process. A discrete change of state will affect simultaneously the mean
and variance of equity returns and of the stochastic discount factor, creating jump-
like effects also in volatility. In this setting we characterize analytically both the
skewness of the returns and the equity leverage effect. We show that the formulas
for conditional skewness and leverage effect in the stock are very similar. We
establish the conditions for negative skewness or leverage in terms of transition
probabilities between states.

To be able to draw the shapes of the implied volatility smiles generated by
a model with latent variables, we need to further specify the stochastic discount
factor. We choose an example an equilibrium-based stochastic discount factor
in the spirit of Rubinstein (1976), Brennan (1979) and Amin and Ng (1993a).
We set our equilibrium model in a recursive utility framework with time non-

separable preferences (Epstein and Zin [1989])%. Our latent variable framework

3Two papers have used preferences that disentangle risk aversion from intertemporal substi-
tution in the context of option pricing. Detemple (1990) uses the ordinal certainty equivalence

hypothesis in a two-period economy and shows that time preferences play a distinctive and



makes it possible to parameterize parsimoniously the dynamic evolution of the
consumption and dividend processes in this equilibrium model. We use a two-
state bivariate Markov switching model as in Cecchetti, Lam and Mark (1993)
and Bonomo and Garcia (1993, 1996)%.

When we calibrate this model to empirically reasonable values of the parame-
ters, we are able to reproduce the various types of implied volatility curves inferred
from option market data. In particular, we show that a decrease in the persis-
tence of a state accounts for a reversal of the smile skewness. As Bates (1996)
emphasized, it is such changing skewness in the smile that poses a challenge to
current option pricing models. Moreover, an increase in the persistence of a state
can produce a frowning implied volatility curve. In terms of preference parame-
ters, the coefficient governing intertemporal substitution is shown to have a much
more pronounced effect on the shape of the volatility curve than the coefficient
of relative risk aversion. The source of uncertainty generating the leverage effect
is also an important factor. When the leverage effect results from aggregate con-
sumption risk only, the smile is much flatter than when the added leverage effect
created by idiosyncratic dividend risk comes into play. We also document various
maturity and stochastic volatility effects with and without leverage effects.

The rest of the paper is organized as follows. Section 2 provides general con-
ditions under which the smile is symmetric. Section 3 develops a generalized
option pricing formula with latent state variables. Based on this formula, Section
4 characterizes the asymmetric distortions of the smile. A comparison with usual
stochastic volatility models with leverage is developed in Section 5 as well as an
analytical characterization of leverage when state variables follow a discrete-state
Markov process. Section 6 uses an equilibrium-based stochastic discount factor
in order to illustrate through simulations the various shapes of the smile that

the model can produce. Section 7 concludes and announces further empirical

significant role in pricing options. For example, option prices change with the expected return
on the stock and may decrease when the risk of the stock return increases. Ma (1998) de-
rives a closed-form pricing formula for European call options written on aggregate equity under

Kreps-Porteus preferences in an i.i.d. environment and in a Markov setting.
4The regime-switching model introduced by Hamilton (1989) has recently enjoyed some pop-

ularity in the option pricing literature. See in particular Campbell and Li (1999), Chourdakis
and Tzavalis (1999), and David and Veronesi (1999). All these models can be embedded in our

framework. A precursor paper in regime-switching option pricing is Naik (1993).



assessment of the proposed option pricing model.

2. The symmetry of the volatility smile

The asymmetry of the implied volatility curves is best characterized with reference
to a benchmark model which produces a symmetric curve. When the volatility is
stochastic as in the Hull and White (1987) model, Renault (1997) and Renault and
Touzi (1996) have shown that the shape of the volatility structure with respect
to the moneyness of the option is symmetric when the returns innovations and

the volatility are uncorrelated. Moneyness x; is defined as the logarithm of the

ratio of the forward price over the strike price, x; = L with S; the

t
YRBET) |
price of the underlying asset, K the strike price and B(¢,T) the price of a pure
discount bond maturing at T). Since both the BS and the Hull and White option
pricing formulas are homogeneous functions of degree one with respect to the pair
(S;, K), we will provide new characterizations of the symmetry of the volatility
smile in the context of a general homogeneous option pricing formula, both in
terms of the option pricing function and of the pricing probability measure.

The theory for pricing contingent claims in the absence of arbitrage introduces
a pricing probability measure ;7 under which the price II; at time t of any
contingent claim maturing at time T is the discounted expectation of its terminal

payoff. In the case of a European call option with strike price K, it is given by:

T, = B(t,T)E}(Sy — K)*, (2.1)

where E; denotes the expectation operator with respect to Q;r °. We will there-
fore compare a general but homogeneous option pricing formula I1;(S;, K) as de-
fined in (2.1) with the BS option pricing formula defined itself by a homogeneous

function BS(.,., o), for a given volatility parameter o, with:

BS(S;, K,0) = S;¢(dr) — KB(t,T)¢(ds),

1 1,
d1 == ﬁ |:ZL‘t + 50’ (T — t):| s (22)
dQ :dl —O'\/T—t.

SExistence and unicity of Q.7 were studied by several authors since the seminal paper of

Harrison and Kreps (1979). In this paper, we are only interested in the existence of a well-defined

pricing probability measure @ 7, whether it is unique or not.
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The BS implied volatility is defined as a function o7 (z;) of the moneyness z;

only, and not of S; and K separately:

I,(S;, K) = BS(S, K, 07 (xt)), (2.3)

since a direct application of the homogeneity of degree one of IT;(.,.) and BS(., ., 0)
with respect to the pair (S;, K') allows one to divide each side of (2.3) by S; and
conclude that o (z;) is well-defined as a function of K/S; or (equivalently) of z;
by :

mi(xe) = bs(xe, oy (x1)) (2.4)

with the obvious change of notation.

In this setting, we can investigate the slope of the BS implied volatility o} (z)
as a function of its distance x to the money, remembering that moneyness x is
equal to 0 at the money, that is when the strike price coincides with the forward
price %. In particular, two strike prices K; and K, are said to be symmetric
with respect to the money if the corresponding x; and zo are symmetric with
respect to zero, since in this case K7 and K, are on each side of the forward
price but their geometric average coincides with the forward price. Therefore, the

relevant symmetry property of the volatility smile is the following:

o;(x) =o0;(—z) forany =. (2.5)

In Proposition 2.1 below, we extend a result first stated in Renault and Touzi
(1996), which characterizes the symmetry of the smile in terms of the option

pricing function®.

Proposition 2.1. If option prices are conformable to a homogeneous option pric-
ing formula x — m(x), the volatility smile is symmetric (o*(x) = o*(—x) for any

x ) if and only if, for any x:
m(—zx)=¢e"n(z)+1—¢€"

Proof: See Appendix 1.

6For sake of notational simplicity, the subscripts ¢ have been dropped.



This characterization of the symmetry of the smile admits an equivalent for-
mulation in terms of the pricing probability measure. While the pricing probabil-

ity measure is usually characterized through the cumulative distribution func-

tion of —=, it is convenient here to characterize it through either the cumu-

Sy’
lative distribution function Fy,.(.) or the probability density function fy,.(.) of
StB(t,T
Vr = Log%. We are then able to prove (see Appendix 1) the following
proposition: '

Proposition 2.2. If the cumulative distribution function Fy..(.) of V@ under a
pricing probability measure is absolutely continuous (associated with a density
function fv,(.) = Fy, (.)) and such that exp(Vr) is integrable, the volatility smile is

symmetric if and only if one of the following three equivalent properties is fulfilled:

(i) For any x:
m(z) = Fyp(x) — e *[1 = Fy (~ )]
(ii) For any x:
Fy(z) = B Ly > _q]]

(iii) There exists an even function g(.) such that for any x:

fon(x) = e*g(2)

These characterizations offer various ways to extend the BS formula, while keeping
both a homogeneous option pricing function and a symmetric smile. Characteri-
zation (i) provides a theoretical support to descriptive approaches which replace
the standard normal cumulative distribution function of the BS formula by alter-
native distribution functions. Characterization (ii) should be interpreted in terms
of hedging. Indeed, Garcia and Renault (1998a) have shown that Ef[e"T 1y, >_4]
is precisely the hedging ratio, in other words the derivative of the option pric-

ing function with respect to the stock price (the so-called delta of the option)?.

"Their proposition 2.1 shows that this characterization of the hedging ratio is a necessary
and sufficient condition for homogeneous option pricing. Since hedging is not the primary focus
of this paper, we leave to the reader the interpretation of this fairly natural relationship between

Fy,.(x) and the delta coefficient.



Finally, (iii) characterizes precisely which type of symmetry of the pricing proba-
bility measure is required for the symmetry of the smile. In particular, it shows
that it is not the density of the log returns that should be symmetric (as it is com-
monly believed perhaps because of the usual log-normal setting), but the same
density rescaled by a suitable exponential function. Indeed, in the log-normal

case:

SrB(t,T)

t

VT = LOg M(Qt,T) N(:utv 0-?)7

2
the condition (iii) means that p, = —ﬁ,which is automatically fulfilled in the

absence of arbitrage since, by application of (2.1) with K = 0, we have S; =
B(t, T)E}St.

In the next subsection, we provide sufficient conditions on the pricing prob-
ability measure to ensure the homogeneity of the option pricing function in a
stochastic framework with state variables. The latter are convenient for cap-
turing the departures from normality in the form of skewness or excess kurtosis

usually present in financial time series.

3. A generalized Black-Scholes and Hull-White formula with state vari-

ables

Merton (1973) stressed that the desirable homogeneity of option prices will be
maintained as soon as asset returns are serially independent. This condition can

be generalized by expressing it in conditional terms, given a path of state variables.

3.1. A State-Variable Framework for Homogeneous Option Pricing

In order to specify a dynamic asset pricing model in discrete time, our focus of
interest will be the dynamic properties of a positive stochastic discount factor
(SDF) denoted® by m 1.

In Hansen and Richard (1987), the existence of a positive SDF is shown to be

equivalent to the absence of arbitrage in a very general conditional information

8The positivity property allows one to compute the probability density function of the pricing
probability measure Q; 7 as myT / Eym; 1. However, in the rest of paper, we will characterize

option prices directly in terms of my 7.



setting. The price at time t of a single payoff pr occurring at time 7" > ¢ is then
characterized by a pricing functional m,(-) = m,(pr) = E[m rpr|I;] where I, is the
relevant conditioning information at time ¢. In particular, the option price will be

written as:

Ty = Etmt,T (ST - K)+ (31)

Moreover, Hansen and Richard (1987) emphasize that if all the finite variance
(given [;) random variables are feasible payoffs, one and only one among them
is a correct SDF. We will therefore refer to the SDFY and think about it as a
payoft. In addition, since agents observe typically more than the econometrician,
the information set I; at time ¢ may contain not only past values of prices and
payofls, but also some latent state variables.

Extending the Hansen and Richard (1987) setting to an intertemporal frame-
work and applying the law of iterated expectations, the log-SDF's necessarily fulfill:

logmy 1, = logmyr, +logmy, 1, , for t <1y < Ts. (3.2)

and therefore: m;r = Hf;tl m,, with: m, = m,_; ;. Following Constantinides
(1992), we directly specify the time-series properties of the stochastic process my,
t = 1,2,..T rather than specifying the SDF sequence through a given specification
of preferences!’. The key feature of our asset pricing model is an assumption about
the sequence (m;)1<-<7 of unit period SDFs which amounts to a factor structure in
the longitudinal dimension. A number of state variables summarize the stochastic
dependence of the consecutive SDFs, in the sense that, given the state variables,
they are mutually conditionally independent. The same assumption is made about
the sequence of consecutive returns of the primitive asset of interest on which
options are written. Therefore, in terms of the joint distribution of m; and returns
on a given asset price Sy, we maintain the following assumption.

Assumption Al: The variables (m;y1, Sg—jl)lggT_l are conditionally serially

independent given the path Ul = (U)1<r<7 of a vector Uy of state variables.

9Notice that this unicity property does not refer to any completeness property which would

be unrealistic in discrete time.
10As stressed by Constantinides (1992), this alternative approach makes it unnecessary to

assume an economy with a representative consumer with von Neumann-Morgenstern preferences.

Actually, we will consider in section 6 more general non time-separable preferences.



The relevant conditioning information at time ¢ will be: I, = ojm, S;, U;, 7 <
t]. This model provides two extensions relative to Constantinides (1992). In the
latter, since the focus of interest was the term structure of interest rates and
options written on bonds, Assumption A1l was only maintained for the SDF se-
quence (my). Resulting bond prices were therefore deterministic functions of the
state variables, and Assumption Al becomes trivial with S; viewed as a bond
price. The second extension relates to the processes considered for the state vari-
ables. While Constantinides (1992) considers only AR(1) processes, our setting
accommodates any process. In particular, we have in mind Markov switching
regime models which can capture any kind of stochastic volatility and jumps in
the return process as well as in the volatility.

Generally speaking, regimes are seen as exogenous according to Assumption
A2:

Assumption A2: The process (my, £ f“) does not cause the process (Uy);

The non-causality property may be interpreted equivalently in Granger (1969)
or in Sims (1972) terms. Granger causality means that, given the past Uf of state
variables, the past values m,,S;,7 < t of the return and SDF processes do not
bring any relevant information to forecast U1 (which is in this sense exogenous).
Sims causality means that the probability distribution of (m41, 25 St ) given I;
and U}, does not depend upon U7 ;. Jointly with the conditional 1ndependence

assumption A1, assumption A2 permits to characterize the joint probability dis-

St+1

tribution of (m,1, S—j, Uri1)r>t given I, as the following product:

s, s,
€| (mrga, S_+1, UT+1)rzt|ft} = 1 [U5.|Uf] {(mfﬂ, S—H)th|U1T} (3.3)
T—t T—t S
= Hé |:Ut+h|U1t+h_1] . Hf |:mt+h, bth |Ut+h:|
h=1 h=1 St+h-1

Proposition 3.1. : Under (Al) and (A2) there exists a deterministic function

U, - such that the option price (3.1) can be written as:

K
Tt = \I/t,T |:Uf, §t:| St.

Proposition 3.1 establishes that the option pricing formula is homogeneous of

degree one with respect to the pair (S, K).

10



To obtain a generalized BS and Hull-White option pricing formula starting
from (3.1), one needs only, in addition to the previous assumptions (Al) and
(A2), a joint log-normality assumption of m, r and %f given a path Ul of state

variables.!!

Assumption A3: The conditional probability distribution of (logmyy1,log 2 ?:1

)

given Ut is, for t = 1,...,T — 1, a bivariate normal:

N ’V M1 7 ’V 072ms+1 Omst+1 -H .
{ Hst1 Omst+1 0§t+1 J J
Assumption A3 is somehow a consequence of a standard conditional central
limit argument which can be applied thanks to Assumption Al and to the additiv-
ity property (3.2) through an arbitrary time scale given a path of state variables.
Given these quite standard assumptions'?, one obtains the following generalized

Black-Scholes (GBS) option pricing formula:

Proposition 3.2. Under assumptions Al, A2 and A3:

5 = o) = B Qe DYl ) — Tl b(dalo)) (5
where © = Log% and:
. e Et,T 1 B(th)
dl (:E) - Et,T + 2 + Et,TLog [Qms(t7 T)E(t,T)

dg(l‘) = dl(.f)—ﬁt’T
T-1

E?,T = Zo-gT—Fl'
T=t

1Tn many applications of the state variable concept, Markovianity is usually postulated.

Then, the relevant conditioning information is summarized by a few recent lags of the state
variable process. Since this Markovianity assumption is not needed at this stage, we maintain

in full generality the whole path U} of this process.
12Since Clark (1973), there is a long tradition of this approach in financial econometrics. Clark

(1973) stressed that non-normality is a puzzle when one has in mind the geometric temporal
averaging of the returns and a corresponding central limit theorem argument. In this respect,
log normality of returns can be invoked without any significant loss of generality once it is

recovered after conditioning on a sufficient number of state variables.

11



and:

_ T-1 1 T-1
B(t7 T) = exp(z Mmr 11 + 5 Z U2mT+1)7
T=t1 T=t1

T—1
Qms(t.T) = B(t,T)exp() amSTH)E[%WlT]. (3.5)

T=t
To put this general option pricing formula in perspective, we will compare it
to pricing formulas based on equilibrium or absence of arbitrage. Concerning the
equilibrium approach, our setting is very general since it is based on a stochastic
model for the SDF which does not rely on restrictive assumptions about prefer-
ences, endowments, or agent heterogeneity. Moreover, our factorization for the
SDF is more general than the usual product of intertemporal marginal rates of
substitution in time-separable utility models. Indeed, our SDF allows to accom-
modate non-separable or state-dependent preferences. The non-separable case
will be illustrated in the last section by a recursive utility setting. An example
of state-dependent preferences could be external habit formation based on state

variables's,

Of course, the benchmark option pricing formulas are based on the absence
of arbitrage. Our general formula (3.4) nests a large number of preference-free

extensions of the Black-Scholes formula. In particular if:

Qms(t,T) =1 and (3.6)
B(t,T) = 1:[ B(r,7+1), (3.7)

one can see that the option price (3.4) is nothing but the conditional expec-
tation of the Black-Scholes price, where the expectation is computed with re-
spect to the joint probability distribution of the rolling-over interest rate 7, r =

— " Mog B(r,7 4+ 1) and the cumulated volatility ;. This framework nests

13These types of preferences have been proposed to explain the equity premium and the risk-
free rate puzzles. Campbell and Cochrane (1999) is a recent example which features external
habit formation. Their discount factor depends on the state of the consumption surplus. In our
setting, the state variables are exogenous and do not depend on the consumption process, which

is consistent with the external feature of the habit and allows for more flexibility.

12



three well-known models. First, the most basic ones, the Black and Scholes (1973)
and Merton (1973) formulas, when interest rates and volatility are determin-
istic. Second, the Hull and White (1987) stochastic volatility extension, since
oy = Var [log S|ut ] corresponds to the integrated volatility ftT o2du in the
Hull and White continuous-time setting. Third, the formula allows for stochas-
tic interest rates as in Turnbull and Milne (1991) and Amin and Jarrow (1992).
However, the usefulness of our general formula (3.4) comes above all from the
fact that it offers an explicit characterization of instances where the preference-
free paradigm cannot be maintained. Usually, preference-free option pricing is
underpinned by the absence of arbitrage in a complete market setting. However,
our SDF-based option pricing does not preclude incompleteness and points out in
which cases this incompleteness will invalidate the preference-free paradigm. The
only cases of incompleteness which matter in this respect occur precisely when
(3.6) or (3.7) are not fulfilled.

In general, preference parameters appear explicitly in the option pricing for-
mula through é(t,T ) and Qns(t,T) since these two quantities depend on the
characteristics of the SDF:' (u,,, +1,02mT+1,0m5T+1)Z;t1. However, in so-called
preference-free formulas, it happens that these parameters are eliminated from
the option pricing formula through the observation of the bond price and the
stock price. Actually, the bond pricing formula and the stock pricing formula
provide two dynamic restrictions relating the SDF characteristics to the bond
and stock price processes. To avoid cumbersome notation, we will consider for
the moment a one-period option price. In this case, the bond pricing equation is

given by:

B(t,t+1) = E, [E(t, '+ 1)] , (3.8)

as shown in Appendix 2. Therefore, observing the bond price will make preference
parameters in B (t,t + 1) vanish from the option price as soon as B (t,t+1) =
B(t,t + 1), that is if and only if §(t, t + 1), belongs to the information set ;.

A useful way of writing the stock pricing formula is:

By [Qums(t,t +1)] = 1. (3.9)

Therefore, similarly to the bond pricing, the stock pricing will make preference

14See Amin and Ng (1993b) for a similar argument in a more specific setting.
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parameters vanish from the option price as soon as Q,s(t,t+ 1) is known at time
t and therefore equal to one. From (3.5), we can then express the conditional
expected stock return as:

Sia, ] 1
E[ S, |It} T Btt+1)

eXp[*O—mst-H]v

which is very close to a standard conditional CAPM equation. Therefore, the
fact that both B(t, ¢ + 1) and Qus(t, ¢ + 1) are known at time t produces both a
preference-free option pricing formula and a CAPM-like stock pricing equation®®.

To conclude, it should be stressed that even in an equilibrium framework with
incomplete markets, option pricing is preference-free if and only if there is a kind
of predictability property (B(t,t + 1) and Qms(t,t + 1) are known at time t)
according to the terminology introduced by Amin and Ng (1993a)'. We will see
in section 5 that the lack of such predictability corresponds in a general sense to

a leverage effect.

4. The asymmetric distortions of the smile

In this section, we focus on the option pricing formula provided by Proposition 3.2
to characterize the cases where the corresponding volatility smiles are symmetric.
According to criterion i) of Proposition 2.2 for the symmetry of the smile, it means

that the general option pricing formula:

() = B Qna(t, T) B (1)) — 7By {%@(dw»}

can be written:
m(z) = Fyp(z) — e *[1 — Fy . (—2)].

But it can be seen in the derivation of the option pricing formula (3.4) (see
Appendix 2) that:

15 A similar parallel is drawn in an unconditional two-period framework in Breeden and Litzen-

berger (1978).
16Qur characterization of preference free option pricing by a predictability property generalizes

the one provided by Amin and Ng (1993a) since it does not depend upon a particular equilibrium

setting with specific preferences and endowments.
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B(t,T)

Therefore, a necessary and sufficient condition for symmetric smiles of (3.4) is
that:

1= By (=2)] = E

E{Qms(t, T)®(dy ()} = Fp(x)
or equivalently:

Fu Qo T)® (s (@)} = 1~ {ggg;§;¢<d2<-x>>} (42)

But from (3.4):

dy( =) = —dy () + %Log [Qms(t, T)—gx’g

Thus by taking into account that Et[ggg] = 1, the symmetry criterion can be
rewritten:
B(t,T) B(t,T)

Et {Qms(th)(I)(dl(m))} = Et { (I)(dl(m) - _iLog [Qms(taT) ~

B(t,T) atr B(t,T)

)

Proposition 4.1. A necessary and sufficient condition for a symmetric volatility

We have therefore proven the following proposition:

smile is the following identity :

| Ba,1 2 B(t,T)
Et {Qms(t,T)CD(dl(.I))} — Et {B(t,T)q)(dl(x) - aLog [QmS(th) E(t, T) )}
(4.3)
A sufficient condition for a symmetric volatility smile is:
_ B(t.1)

It should be stressed that the sufficient condition (4.4) is always fulfilled in
expectation because, as shown in Appendix 2, the bond and stock pricing formulas

are respectively given by:
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B(t,T) = E, [E(t, T)} , and (4.5)

Moreover, taking into account the highly nonlinear features of the two sides
of the necessary and sufficient identity (4.3), Jensen effects are likely to violate it
if (4.4) is not fulfilled. In other words, condition (4.4) appears at first sight not
too far from being necessary. In order to interpret this symmetry condition, one
should first notice that it is likely to be violated at least for long-term options
(T >t + 1) when there is interest rate risk. Actually, the factorization of B (¢, T)

and Qs (t,T') which obviously results from (3.5) gives:
Bt,T) T« B(r,7+1)

Qms(t,T) B :TE[ Qms(T, 7+ 1) (4.7

Therefore, the symmetry condition (4.4) maintained for every elementary period
[7,7 + 1] will imply that:

B(t,T) T
O~ L[t B(r, 7+ 1), (4.8)

which cannot coincide with B(¢, T) if there is interest rate risk. In the rest of this
section, let us assume for sake of simplicity that there is no such interest rate risk.
Condition (4.3) can then be expressed as Qms(t,7) = 1, which implies by (3.5)
that E[Z—ﬂUlT Jexp[— 3277} Gpneria] is known at time t as well as a CAPM-like

stock pricing equation:

1 T-1

BIGIUT) = 5 exbl= 3 Ol (1.9

T=t

The expected stock return at time t can then be expressed as:

E[%|It] = B(tl, T) Et {exp[ ;Umsr{—l]} (410)

In other words, the risk-adjusted discounted stock price process appears as
a martingale, when the risk adjustment suitably incorporates the market risk,
measured by the covariance term o,,s, into the discount factor. This martingale

restriction (see Longstaff, 1995) on the stock price at time t, if violated, is likely to
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introduce skewness in the volatility smile. In the particular setting of an Hull and
White model, Renault (1997) provides simulation evidence to show that a very
small discrepancy (as low for example as 0.1 per cent) between the stock price S;
and its martingale model-based theoretical value may induce severe skewness in
the smile.

In the Hull and White setting, asymmetries of volatility smiles are usually
referred to as leverage effects. We will explain in section 5 the relationship between
these effects and the violation of our symmetry condition Q,,s(¢t,7) = 1. However
for T'=t+1, this violation not only means that some of the conditional moments
Hsti1s 025t+1,and Omst+1 depend upon the contemporaneous value U; 1 of the state
variables but that, in addition, this dependence is maintained at the level of the
risk-adjusted expected return g | + %025t+1 + Omst+1- Moreover, if the condition
Qms(t, T) = 1 is fulfilled for T = ¢ + 1, then it is automatically fulfilled for
any value of T since it implies that exp[zf;tl fgri1 + %02ST+1 + Omsr41] 1s equal

to and is known at time ¢, even though the conditional moments

1
2= B(r,7+1)
Zf;tl Porits Zf;tl 02441, and Zf:_tl Omsr+1 do depend individually on the future
path of the state variables. Therefore, apart from interest rate risk distortions, the
symmetry of the volatility smile for short-term options implies the same property

for longer-term options'’.

5. Leverage Effects and Comparison with Stochastic Volatility Models

The predictability property referred to in the previous sections amounts to the
knowledge at time ¢ of the quantities B (t,t + 1) and Qs (¢, + 1) which can be

written as:

B(t,t+1) = E;[my |UfT] = exp |:Mmt+1 +

2
Umt—}—l
2

1"The argument is not as explicit in the Hull and White setting since Renault and Touzi
(1996) provide a direct proof that the absence of leverage effect (which is a short-term property)
will produce symmetric volatility smiles irrespective of the maturity of the option. However, the
proof is based on the maintained hypothesis that the volatility risk premium does not depend
on the level of the stock price. If it were not the case, it would introduce a Granger-causality
effect in contradiction to assumption A2. But the Hull and White setting does not make explicit

the implications in terms of the SDF of such maintained assumptions about risk premia.
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S
Qms (t,t+1) = B(t t+1)exp (omsisr1) E, { am \ tH}

N o2
= B(t,t+1)exp (omsts1)exp {,ustﬂ + S;H} (5.1)

Therefore, the crucial issue for predictability, which corresponds to preference free
option pricing, is to determine if the parameters fi,, ;.\ 1, fs 4115 o2 41 JE ++1 and
Oms,t+1 Of the joint conditional probability distribution of (mtﬂ, SL ) given U
depend or not upon Ui, that is if there is or not an instantaneous causality
relationship!® between the state variable process U and the process (mt+1, %’—1)

5.1. Returns Volatility and Leverage Effect

We will now check whether this property also eliminates any kind of leverage effect,
that is any evidence of negative correlation between stock returns and changes in
returns volatility. Volatility tends to rise in response to bad news (excess returns
lower than expected) and to fall in response to good news (excess returns higher
than expected), as pointed out in Nelson (1991). In our setting, returns volatility
can be defined in three ways. The first and most obvious one is the individual

stock return volatility process:

S
hi = Var [Log an |It]

= B U] + Var [, |U1].

This stock volatility dynamics can give rise to a micro—level leverage effect. How-

ever, both on empirical grounds and theoretical aggregation arguments'?, leverage

8Qur results of equivalence between preference-free option pricing and no instantaneous
causality between state variables and asset returns are also consistent with GARCH option pric-
ing. Duan (1995) derived it first in an equilibrium framework, but Kallsen and Tagqu (1998)
have shown that it could be obtained with an arbitrage argument. Their idea is to complete
the markets by plugging the discrete-time model into a continuous time one, where conditional
variance is constant between two integer dates. They show thats such a continuous-time embed-
ding makes possible arbitrage pricing which is per se preference-free. Therefore, preference-free
option pricing cannot be recovered in the presence of an instantaneous causality effect, since it

is such an effect that prevents the embedding used by Kallsen and Taqqu (1998).
19See Bakshi, Karpadia and Madan (2000).
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effects may be more important at an aggregate level. One way to capture this

aggregate leverage effect is to consider the SDF volatility process:

h* = Var[logmgy |1;]
B[ U]+ Var [ 1U1].

me+1

A third measure of volatility may be defined in terms of non diversifiable
risk. Let us consider for instance the simple case where there is no aggregate
leverage effect (because there is no instantaneous causality between the state
variable process U and the SDF process m) and instantaneous changes in return
volatility do not go through the stock variance process (02, does not depend
upon Uzyq). Then, the stock pricing formula (2.19) can still be written in a form

close to the standard conditional CAPM equation:

E{St“ II} o 1
Se '] Bt t+1) Efexp (msi1) |Uf]

Cov |ex , €XP Omst1 |UT
~exp (o_it—H) [ P lgiq p tjl | 1} .
E [exp (0mst+1) U]

In other words, k™ = [Elexp (0mst+1) |UF]] " is the relevant measure of non-
diversifiable risk. It defines the part of the stock return volatility which is com-
pensated in equilibrium, up to a correction for “non diversifiable leverage effect”,
that is a non zero conditional covariance between (exp fiy,1) and (€Xp Omspi1)-

To summarize, we propose to extend the usual definition of leverage effect pro-
posed by Nelson (1991) to any positive or negative conditional covariance, given
I;*°, between the mean returns and the three concepts of volatility just defined,
that is Cov [py 1, by |UL], Cov [pgr, A7 [UE], and Cov [piyyyq, Iy |UY] . In
other words, leverage effect may occur if and only if one of the three follow-
ing properties is fulfilled: (i) Both p,,; and 02, depend upon Uy;; (standard
leverage effect for the individual stock); (ii) Both py, ; and o1 depend upon

Uis1 (leverage effect for the individual stock but only through its non-diversifiable

200f course, some nonlinearity effects may create nontrivial relations between conditional
covariances of interest like Cov [ust 1, h |UT ) and Cov [cxp Hst113€XD Omst4+1 |Uf] These

effects are neglected in our informal comments.
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risk); (iii) Both fi,,,,, and 02, depend upon Uy, (standard leverage effect for
the portfolio return which mimics the SDF, that is aggregate leverage effect).
Moreover, our state variable setting offers a very flexible framework for para-
metric models of leverage effect. In standard stochastic volatility models (see
Ghysels, Harvey and Renault, 1996, for a survey), the usual leverage effect is gen-
erally captured by a (negative) constant linear conditional correlation coefficient
between log Sg%tl and hy,, (given I;). In our setting, this correlation coefficient
depends on the two functions p1,,,, and 02 of the state variables Ui and upon

the exogenous dynamics of these state variables through:

S,
Con 108 %2 | = Cov {pins B [0 | U] + Var s |01 01)

and the corresponding conditional variances. In other words, the leverage ef-

fect of the return process log q;; L which features stochastic volatility, can come

21

from two sources The conditional mean process ., may be a stochastic

volatility process which features a leverage effect defined by the negativity of

Sit1
St

terized by a leverage effect and then Cov [y, 1, E [0%,,, |[UT? ] |U!] will be neg-

Cov [,Ust+17 Var [,ust+2 ‘Ult“} |UH . Or, the process log itself may be charac-
ative, which means that bad news about expected return (when /i, is smaller
than its unconditional expectation) imply in average a higher expected volatility
of Logs—g:*t'—l, that is a value of E [0, |[U*?) greater than its unconditional mean.

We have seen that Assumption A3 not only allows to capture the standard
features of a stochastic volatility model (in terms of heavy tails and leverage
effects) but also provides for a richer set of possible dynamics. Moreover, we can
certainly extend these ideas to multivariate dynamics either for the joint behavior
of market and stock returns or for any portfolio consideration. For instance, the
dependence of 7,511 on the whole set of state variables offers great flexibility to
model the stochastic behavior of correlation coefficients, as recently put forward
empirically by Andersen et al. (1998). This last feature is clearly highly relevant
for asset allocation or conditional beta pricing models. In the next subsection,
we will see that a simple Markov switching model offers a versatile framework to

capture the exogenous dynamics of the state variables.

21This decomposition of the leverage effect in two terms is the exact analogue of the decom-

position discussed in Fiorentini and Sentana (1998) and Meddahi (1999) for persistence.
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5.2. Comparing Skewness and Leverage Effects with Discrete State

Markov Latent Variables

Asymmetric distortions of the volatility smile are often viewed as a signal of some
skewness in the underlying probability distribution of returns. Since we have
focused our explanation of the volatility smile on various kinds of leverage effects,
it is worthwhile to assess how these effects relate, in our state variable setting,
to the skewness properties of the conditional probability distribution of returns.
To compare analytically the skewness of the returns distribution and the leverage
effects, we assume that the latent variables follow a two-state Markov switching

process. Therefore, we assume that the log return can be written as:

St+1
Sy

log =Y = po(1 = Ups1) + 1 Up1 + [00(1 = Upy1) + 01Uiia]eser1, (5.2)

the variable U;y; taking the values 0 or 1 with the probabilities my and m;. The
transition probabilities between states ¢ and j are defined as: p;; = Pr{Upq =
J|Uy = 1|, with p;; = 1 — p;; for i # j,and m; = %, 1,7 =0,1.

The returns are therefore a mixture of normals with two different means and
variances. It is well-known that such a mixture model will generate skewness and
excess kurtosis in both the conditional and unconditional distributions of returns.
We are interested in the conditional distribution of returns Y;,; given I;, the

information available at time ¢. The moments of Y 1|/, are defined as:

E[Yi|L] = mY if Uy = i (5.3)

E{[Yir1 — EYena|[ I L]} =V i U, =i (5.4)

Given the process assumed for Y;,; and Uy, the first three moments are given
by:

() _ ] Pooko + (1 — poo)py if i = 0 55

(1 —pu)po + pupy ifi=1

) Poocs + (1 = poo)ot + poo(1 — poo) (pty — pg)? if i = 0
m® — (5.6)

(1= pi1)og +puot +pu(l —pu)(py — pe)* if i =1
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m® _ Poo(1 — poo) (g — 21)[3(02 — 02) + (1 — 2pao) (g — p1o)?] if i =0
pii(L—pu)(py — p1)[3(0F — 05) + (1 — 2pn1) (py — p1o)?] if i = 1

(5.7)
We want to compare skewness, defined as:
®3)
m;
Sk’i = [m(Q)]% , (58)

with the leverage effect that we defined as Cov [,uYt bl |Uﬂ . For the Markov

case, we have:

hy =m® iU, =i (5.9)

fie1 = po(1— ) + pyi if Uy = i. (5.10)
Therefore, we can write:
2
Cov [ptyeys i [UF] = Bu [, lo(1 = Usss) + puUssa]] = mi3) B,

After some algebraic manipulations, we obtain the following expressions for

the leverage effect:

( Poo(1 = poo) (o — 11)[(08 — 1) (Poo — (1 — p11))

Cov [Myt+1, t+1 ‘Ut} = +( = 10)*(Poo(1 = poo) = pua(1 = p1n))} if i = 0
pu(1 —pu) (= po)[(0F — a5) (P11 — (1 — poo))

+(py — po)*(P11(1 — p11) — poo(1 — poo)) if i =1

\

(5.12)

First, it appears clearly that the formulas for conditional skewness and leverage
effect in the stock are very similar. In both the skewness and leverage expressions,
irrespective of the initial state, there is a term in (u; — ) (03 — 03) and another
term in (p; — 1o)®. We would like to characterize the bad state as the state where
the volatility is high (say o3 > 03) and the mean is low (u; < p,). With such a

characterization, the skewness in the bad state (state 1) will be negative as long as
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the bad state is not too persistent (p;; < %) On the contrary, for the good state,
the skewness will be negative when the good state is persistent (poy > %) The
conditions for the leverage effect are a little more complex, but it will be negative
in both states if poo + p11 > 1 and p11(1 — p11) > poo(1 — poo). The first condition
implies some persistence in at least one of the states while the second requires more
persistence in the good state. This is consistent with the conditions for skewness.
These conditions for negative leverage are consistent with interpretations of the
states as business cycle states or bull and bear markets, where typically the good
state is more persistent. Of course these are only sufficient conditions. The
skewness and the leverage effects can still be negative even if they are not met

provided that the means and variances are of the right magnitude.

6. A characterization of the smiles with an equilibrium option pricing

model

In this section, we want to illustrate the various types of smiles that can be
obtained in a state variable option pricing framework. We propose a setup that
leads to a computable formula with an equilibrium version of the SDF. We choose
preferences in the recursive utility class (Epstein and Zin, 1989) which are richer
than the usual expected utility model. In particular, the elasticity of intertemporal
substitution is disentangled from the risk aversion parameter. As we will see, the
intertemporal substitution parameter plays an important role for pricing options
when preferences matter. In this equilibrium model, the latent state variables
affect the fundamentals of the economy and follow a discrete-state Markov process

as in the previous section.

6.1. The equilibrium stochastic discount factor

In the recursive utility framework of Epstein and Zin (1989), the stochastic dis-

count factor is given by:

_)V(P—l)M;L—ll (6.1)

where C—g*t'—l is the growth rate of consumption in the economy and M, represents
the return on the market portfolio (computed with the assumption that Cj is

the payoff of the market portfolio). The parameters 3, v and p are preference
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parameters. The parameter 3 is the subjective rate of time preference, while
a = 7yp can be interpreted as a relative risk aversion parameter with the degree
of risk aversion increasing as « falls (o« < 1). The parameter p is associated
with intertemporal substitution, since the elasticity of intertemporal substitution

is 1/(1 — p)*2. When v = 1, we obtain the well-known stochastic discount factor

C, _
é_+t1)a 1‘

Given this stochastic discount factor, the price of a European option m; ma-

for the expected utility case myy1 = 3(

turing at time T can be obtained as a particular case of formula (3.4), namely:

T KB(t,T
gi = F; {Qxy(t,T)fb(dl) — %@(dg)} , (6.2)
where:
Log [StQ{(—Y(t’T)} 1 T T
- KB(t,T) 2 \1/2 _ 2 \1/2
di = + _( UYT) 7and dy = dy — ( UYT) :
(ZZ:H—l 0-21/7')1/2 2 T:ZH-:[ T:Zt—l—l
and:
B T 1 T
B(t,T) = T Yaf (y)exp((a —1) Y mx, + Jla— 1)) 0%, (63)
T=t+1 T=t+1

T 'Y_l
with: af (7) = [17= [ d] - and

T

- S
Qxv(t,T) = B(t, T)bf exp((a—=1) ) UXYT)E[gTW{‘F]- (6.4)
T=t+1 t
. 1 U7
with: bf = [T7_,,, b

We define )\, = A(UY) = ZZ and ¢, = o(U) = £ (with D, the dividend on

Cy Dy
the stock) as the solutions to Euler equations for the price of the market portfolio

PM and the price of the stock, and X; = Log Cfil and Y; = Log%.

22 As mentioned in Epstein and Zin (1991), the association of risk aversion with a and intertem-
poral sustitution with p is not fully clear, since at a given level « of risk aversion, changing p
affects not only the elasticity of intertemporal sustitution but also determines whether the agent

will prefer early or late resolution of uncertainty.
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6.2. Characterization of the Smiles

We use this equilibrium framework to calibrate the various shapes of the implied
volatility curves that can result from the option pricing formula (6.2). In particu-
lar, we analyze the sensitivity of the smile skewness to various parameters entering
the formula, most notably the parameters of the stochastic process driving the

fundamentals and the preference parameters.

6.2.1. A Markov-Chain Setup for the State Variables

The process describing the joint evolution of X; = log C;/C;_1 and Y; = log D,/ D;_,

is parameterized as follows:

Xt = mx(Ut)+Ux(Ut)€Xt
i = my(Up) + oy (Up)eyy

The vector (ex¢,ey¢)’ follows a standard bivariate normal distribution with cor-
relation coefficient pyy. The time-varying mean and variance parameters are a
function of the state variable process {U;}, which is assumed to be a discrete
first-order Markov chain such that U; takes values in {1,.., N} with Pr(U; = j) =
Zf;j pij Pr(Ui—1 = i) and transition probability p;; = Pr(U; = j|Ui—1 = i) for
i,7=1,...,N.

For given values of the transition probabilities of the Markov chain governing
the state variable process and given values of the structural parameters, it is
possible to compute the price of an option according to the generalized Black-
Scholes and a fortiori the Hull-White formula. The steps followed to compute

option prices are detailed in Appendix 3.

6.2.2. State variables and the smile

To calibrate the model, we choose parameters for the state variables which mimic
roughly business cycle data. We consider the case where the state variable U,
takes values in the set {1,2} and is governed by a first-order Markov chain with
a transition probability matrix [p1; = 0.9, pao = 0.6]. The state-contingent para-
meter values of the consumption and dividend processes are set as mx; = 0.0015,
mxo = —0.0009, 0x1 = oxo = 0.003, my1 = myo =0, oy1 = 0.02, oy9 = 0.12,
and pyxy = 0.6. With this specification, U; = 1 can be interpreted as an expan-

sionary state where consumption growth is positive and stock market volatility
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is low. On the other hand the recessionary state, U, = 2, is characterized by
negative consumption growth and a more volatile stock market. The preference
parameters are set as follows: v = 1, p = —10, and hence @ = —10. This con-
figuration is taken as the benchmark expected utility model for comparison with
recursive utility extensions. In the following we explore the various implications

that the generalized option pricing model has in terms of the volatility smile.

Stochastic volatility and stochastic interest rates The first implications
for the volatility smile that we explore are those arising from the state variable.
Figures 2 through 4 illustrate these effects. In order to illustrate the effects due
to maturity and stochastic volatility, consider the case where the discount factor
B(t,T) is deterministic and where the factor Q(¢,T') is unity. The interest rate
risk is eliminated by holding constant myx; and ox; which implies constant A,
and in turn a deterministic discount factor B(t,T). The left panel of Figure 2
illustrates the smile effects arising from stochastic volatility. The three curves
show the effect of decreases in the coefficient of variation of the volatility from
0.71 to 0.60 to 0.33 with the flattest representing the least variation. As expected
if the coefficient of variation of the volatility goes to zero, Black-Scholes pricing
results and the implied volatility curve would be completely flat.

Now holding the coefficient of variation of the volatility constant, the right
panel of Figure 2 illustrates the effect of increasing the option’s maturity. The
most curved smiles in each panel are in fact identical representing a one-period
option. The two other curves in the right panel represent options whose maturity
is increased by one and two periods with the flattest being associated with the
three-period option. We see that as the option’s maturity increases, the smile
flattens.

Figure 3 illustrates the maturity effect when Q(¢,T) # 1. For comparison, the
figure illustrates also the smiles that obtain from preference-free option pricing
a la Hull-White. The latter smiles are distinguished by their symmetry with
respect to zero. The solid lines are the implied volatility curves for a one-period
option whereas the dashed lines are for a two-period option. The left and right
panels are associated with states 1 and 2, respectively, as the current state. It
is seen that the maturity effect depends on the current state: when state 1 is
operative at time ¢, an increase in maturity results in flatter yet greater implied

volatilities, while when in state 2 the flatter implied volatility curves associated
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with longer maturities are lower. It should be noticed that the smiles are moving
to the right in both states. If one considers the expressions developed in section
5.2, this is indicative of a negative skewness or leverage effect due to the assumed
configuration of the transition probabilities for the two states.

Next consider the case where B(t,T') is stochastic and Q(¢,T) # 1. The lines
and panels of Figure 4, similar to those of the preceding figure, illustrate this case.
Comparing the respective lines of figures 3 and 4, reveals that stochastic interest
rates imply greater asymmetry in the smile. An important remark is that at longer
maturities, the smile is more asymmetric than at shorter maturities. This feature
is apparent by noticing that the point of intersection between the symmetric and
asymmetric smiles is displaced to the right for the longer maturities. This is
consistent with the violation of the symmetry condition of Proposition 3.3 due to

the lack of factorization of this condition in a sequence of elementary unit periods.

Average duration and correlation effects Figures 5 and 6 illustrate the
effect of changes in the persistence of each state on the implied volatility curves.
Figure 5 considers the case where the probability of staying within a given state is
greater than its exit probability, p;; > p;;. The dashed lines represent an increase
in poo from 0.6 to 0.8 and, as previously, the left and right panels are associated
with states 1 and 2 respectively as the current states. From each panel it is seen
that an increase in the persistence, or average duration (1 — pgg)™!, results in a
greater asymmetry of the smile in both states. It is interesting to note from the
right panel of Figure 5 that frowns obtain. In Figure 6 we consider the opposite
case where p; < p;;. We take as a base case p;; = 0.4 and pyy = 0.1. Increasing pio
from 0.6 to 0.9 in this case has the same effects in terms of asymmetric distortions
of the smile as in Figure 5 but with the roles of current state reversed: frowns in
this case arise when state 1 is the time ¢ operative state.

Figure 7 graphs the schedule of option prices across moneyness for two extreme
values of py, the correlation between consumption and dividends. The solid line
represents the case py, = 1 while the dashed line is for py, = 0. Regardless
of which state is operative at time ¢, a decrease in the correlation between con-
sumption and dividends results in an upward shift of the entire schedule of option
prices. Intuitively when the stock is perfectly correlated with the market port-
folio, there is one less source of risk to hedge and hence option prices are lower

reflecting the smaller risk premium in this case.
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Leverage effects As we have seen, the preference-free option pricing formula
a la Hull-White obtains when there are no leverage effects, neither through the
market risk nor through the stock risk. Figures 8 and 9 illustrate the implica-
tions that these leverage effects separately have in terms of the volatility smile.
These implications are explored in the context of a two-period option which is the
shortest horizon one can consider here since for a single-period option, absence of
leverage through the stock risk implies Black-Scholes pricing.

In Figure 8 the dashed lines show the implications that an absence of leverage
through the consumption process has on the volatility smile. It should be men-
tioned that even in this case, the stochastic feature of interest rates is maintained
by including the past value of the state variable in the consumption dynamics.
The solid lines are the benchmark case of leverage effects through both the con-
sumption and dividend processes. Notice that the symmetric smiles resulting from
preference-free option pricing & la Hull-White are identical whether or not there
is leverage through consumption. Absence of leverage through the consumption
process leads to a more asymmetric smile as is apparent from both panels of the
figure that, as before, are conditional on the current operative state.

Similarly, in Figure 9 the dashed lines show the effect of an absence of leverage
through the dividend process. Again we observe an asymmetric smile, except that
in this case the asymmetric distortion is far more pronounced than in the previous

figure.

6.2.3. Preferences and smile effects

We now proceed to investigate the role played by the preference parameters. We
will see that preferences, in particular intertemporal substitution, can have an
effect in terms of the asymmetry of the volatility smile but that they play a
secondary role compared to that played by the state variable. This is reassuring
if one believes that such parameters should stay relatively stable over time in face
of the well-documented changing shapes of the volatility smile. The benchmark
for comparison here is the expected utility case which obtains when v = 1. This
was in fact the case up to this point. For example, recall that the preferences
underlying Figure 4 are v =1, p = —10, and hence a = —10.

Consider now Figure 10 where the solid lines are the volatility curves for
the following configuration of preference parameters: v =1, p = —1, a = —1;
whereas the dashed lines are for v = 1/10, p = —10, @ = —1. Notice that the
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symmetric preference-free smiles are necessarily identical under both preference
configurations. Comparing the solid lines of Figure 10 with those of Figure 4, we
see that reducing p (and hence « since v = 1) from —1 to —10 leads to greater
asymmetry in the smile. That this asymmetry is in fact caused by the change in p
and not by that in « is verified by considering the dashed lines in Figure 10. Since
the asymmetric dashed smile of Figure 10 is virtually identical to the asymmetric
solid smile of Figure 4, we conclude that it is intertemporal substitution and
not risk aversion which explains asymmetric volatility smiles. This is confirmed
in figure 11, where increasing o to —1 for one- and two-period options leads to
smiles that are practically identical to the ones obtained in Figure 4.

This point can also be made in the following way. The risk aversion parameter
a enters the generalized pricing formula through the discounting factor B (t,T)
and through the CAPM-like factor Q(¢,T) which accounts for the covariance risk
between the stock and market portfolio. If the role of the discounting factor
is held fix, then the only difference between the generalized option prices and
their preference-free counterparts would be due to risk aversion as this is the only
preference parameter that enters the Q(¢,7) factor beyond what is already em-
bodied in the B (t,T) factor. To this end consider Figure 12. The left panel plots
E Sy (®(di™) — Qxy (t, T)®(dFP%))} ; that is, the difference between the first
parts of the preference-free and the generalized option pricing formula in which
preferences matter. The difference between the second parts of these formulas,
E, {K(B(t, T)®(dEW) — Bt T)(I)(d,QGBS))} , is plotted in the right panel. In each
panel the solid line represents the case where B(t,T') is stochastic whereas the
dashed line represents the case where B(t,T) is deterministic. Comparison of the
left and right panels reveals no differences whatsoever.

The conclusion that emerges is that risk aversion plays no role in explaining
the departures of generalized option prices in which preferences matter from their
preference-free counterpart. In turn this implies that it is intertemporal substi-
tution that explains asymmetric volatility smiles and not risk aversion as has

traditionally been thought in a model where these two concepts are entangled.

6.2.4. Errors from preference-free pricing

Given a world in which preferences matter for option pricing, let us consider the
relative pricing error that is committed by using the preference-free formula to

price options. With the values of the preference parameters and the endowment

29



process given previously as the benchmark for comparison, we generated option
prices according to the generalized pricing formula where preferences matter and

its preference-free counterpart and plotted the relative difference; i.e. (7ZW —

7&BS) /7@BS - Figure 13 shows the relative pricing error across moneyness for
options with maturities of one (solid line), two (dashed line) and three periods
(short dashes). Again the left and right panels are associated with states 1 and 2,
respectively, as the current operative state. In both cases we see that the greatest
pricing errors are committed for out-of-the-money options and that the pricing
errors are most pronounced at shorter maturities.

Recall from above that when the transition probability matrix was changed
from one with persistent states [p;; > pi;] to one where [p; < p;;], the result was
a reversal of the asymmetric bias in the observed volatility smile. Such a change
in the transition probabilities has of course a similar effect in terms of relative
pricing errors: If [p; < psj], Figure 13 gets reversed with in-the-money options
being more severely underpriced by the preference-free formula than out-of-the-
money options.

This bias reversal is similar to one documented by Hull and White (1987) with
respect to the Black-Scholes formula. They found that when there is a positive
correlation between the stock price and its volatility, out-of-the-money options
are underpriced (by the BS formula), while in-the-money options are overpriced.
When the correlation is negative, the effect is reversed. We find something similar
with respect to the preference-free option pricing formula a la Hull-White. For
the given specification, the covariance between the stock prices and its volatility
is positive when [p;; > p;;| and negative when [p; < p;;|. Hence the same pattern
emerges: out-of-the-money options are underpriced by the preference-free formula
when there is a positive correlation between stock prices and its volatility, and
overpriced when this correlation is negative.

This result may well provide an explanation to the empirical mispricings ob-
served by Bakshi, Cao, and Chen (1997) with a pricing model that admits sto-
chastic volatility, stochastic interest rates, and random jumps but which remains
preference-free. In Garcia, Luger and Renault (2000), we assess the empirical
performance of our model relative to a preference-free formula in terms of pricing

CITors.
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7. Conclusion

In this paper, we have analyzed the symmetry of the so-called implied volatility
smiles, which are often used to characterize the European option pricing biases
produced by the Black-Scholes formula. We have stated conditions that an option
pricing formula must obey to produce a symmetric volatility smile and translated
them into conditions on the pricing probability measure. We proposed an option
pricing formula with a general stochastic discount factor that generalizes the sto-
chastic volatility option pricing formula. Such a generalization is achieved through
a conditioning on state variables. We have shown that two kinds of generalized
leverage effects may explain (besides the interest rate risk) asymmetric smiles:
either a genuine leverage effect, that is an instantaneous correlation between the
return on the stock and its stochastic volatility process, or a stochastic correlation
between the return of the stock and the stochastic discount factor. These results
provide some theoretical foundations to the observed asymmetric smiles. We have
also explained how these leverage effects determine if the option pricing formula
is preference-free or not.

Through an equilibrium stochastic discount factor and a Markov regime-switching
process for the state variables, we have shown that the model leads itself to a com-
putable formula that can reproduce many of the shapes observed for the implied
volatility curves. The remaining task is to show that the parameters estimated
from the data in such an extended framework can be used to achieve smaller

pricing or hedging errors out of sample. We leave such a task for future research.
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Appendix 1

Proof of Proposition 2.1:

We first check that, for any given value of o,the function 7(.) = BS(., o) fulfills
the announced property:

m(—z) =¢e"n(z)+1—¢".
Indeed, from (2.2):
BS(z,0) = ®[di(z,0)] — e *®[da(x, 0)],

with: di(z,0) = £ + £, do(x,0) = £ — Z.

But: ®[dy(—=x,0)] = ®[—di(z,0)] = 1 — ®[di(z,0)],and: Pld;(—z,0)] =
(I)[—dg(l',O') =1—-90 dQ(.’E, g ]

Therefore:

BS(—z,0) = ®ldi(—z,0)] — e*P[ds(—x,0)]
= e*®ldy(z,0)] — Plda(z,0)] + 1 —€”
= e"BS(z,0)+1—¢€".

Let us now consider another homogeneous option pricing formula z — ().
The associated BS implied volatilities are then defined by:

m(x) = BS[z,o0%(x)],
m(—x) = BS[z,0%(—x)].

Therefore, for any x:

<~ T

oc'(x) = o (—x)
< 7(—z) = BS[—z,0%(2)]
= ’/TET; =e*BS[z,0%(z)] +1—¢€°

Proof of Proposition 2.2:

a) First, we prove that the criterion of Proposition 2.1 is equivalent to the
property (i) of Proposition 2.2. We can write (2.1) as:

‘o o K Sr
7m&jj:B@ﬂ&/1 Ci—ad@j(—>
£ \S S S

Therefore, by taking the derivative with respect to K, we obtain the well-
known relationship between the option pricing formula and the pricing probability
measure.

or ST K
= _ = >
aK(St,K) B(t,T)Q: |:St > St:|

= —B(t,T)[1 - Fy,(—z)].
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Since:

on 0 K K 0
— () = —[n(1, =) = ———7n(S,. K
72 ™ = gt gl = g g6 K)
we have, for any x :
on
A L |
Therefore, the property (i) of Proposition 2.2 may be rewritten as:
_Lom on

m(x)=1—c¢ %(—x) - %(x)
or equivalently:

on - on
O () = () + on (@) 1)

This last equality is obviously a corollary of Proposition 2.2 obtained by taking
the derivative with respect to x of the identity in Proposition 2.2. Conversely, this
equality implies that for any x :

- /:OO Z—Z(—U)du = /:oo e"[m(u) + %(u) — 1du

This equation will provide the criterion of Proposition 2.2 if we are able to com-
plete it by the following limit condition:

lim m(—z) = lim [e* 1-¢%.

Therefore, the required equivalence will be proved if we show that this limit
condition is always guaranteed. But, on the one hand:

hrf m(—x) = lim 7(x)
= lim_B(t,T)E; Maz[0, Sy — K] = 0

by virtue of the Lebesgue dominated convergence theorem since:Max[0, Sy —
K] — k0 0 almost surely and 0 < Maz[0,Sr — K| < Sy, which is by as-
sumption integrable with respect to the pricing probability measure. On the
other hand:

. : 1 « +

R
= 1+ Kll_I)IOl+ EEt Maz[—Sr, — K]

St
— 1— lim ErMin[2L
A B m[K,

: g (O
= —Klgl(r)l+Ethn[?—

1]
1,0] =0
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by virtue of the Lebesgue dominated convergence theorem since: M m[%— 1,0] —x o+
0 almost surely and 0 < —Min[52 —1,0] < 1. This proves that: lim, . 7(—2) =
0 = lim,, 1 |e"m(z) + 1 — €”] and completes the proof of the required equivalence.

b) We now check that properties (i) and (ii) of Proposition 2.2 are equivalent.
The general definition (2.1) of the pricing probability measure implies that:

Wt(St, K) = B(t,,l—’)l;;< [ST]‘[STZK] - B(t, T)KQt[ST Z K],
that is, after dividing by S; :
m(x) = Bile" Lz o] — e77[1 = Fry(—2)]
By identification of this formula with condition (i), we see that (i) is equivalent
to (ii).

¢) Finally, we prove that conditions (i) and (iii) are equivalent. By taking the
derivative of (i), we obtain:

on —x —x
%(I) = fr(z) —e " frp(—2) + € *[1 = Fyp(—x)].
But, since by part a) of this proof:

8_7r
ox

we conclude that (i) implies:

() = e[l = Fyp(=2)]

fVT (l‘) = 67meT(_$)

or:
engT(x) = eingT(ix)

which means that the function  — e fy..(7) is even, which is exactly condition
(iii) of Proposition 2.2. Conversely, if this condition is fulfilled, we have, for any
x:

“+oo +oo
Frrtwydu= [ e (—ujd

This equation will provide property (i) of Proposition 2.2 if we complete it by
the following limit condition:

lim_m(z) = lim [Fy,(z) e *[1 ~ Fyy ()]

r—+00

Therefore, the required equivalence will be proved is we show that this limit
condition always holds. But it is clear that:

lim [Fy.(x) — e ®[1 — Fy.(—x)]] = lim Fy.(x) =1

T——+00 T——+00

and that :lim, .. m(x) = 1, since we have already shown in part a) of this proof
that: limg_, 4 €®[m(z) — 1] = —1. This completes the proof.l
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Appendix 2

In this Appendix, we consider the moneyness of the option as fixed and we
denote by k the value of & K.

A. Proof of Proposmon 3.1:

From (3.1) and the decomposition of m;r conformable to (A1) and (A2):

- T-1 T-1 g +
gtt =EqE (H Mri1) [( ;H) - k] |1, UL

T=t T=t
But, by (A1), the variables (mT+1 5 =) ¢ are independent of (mTH 5 e
given UT. Therefore:

St H mr+) [

is a conditional expectation computed in the conditional probability distribution
of Ul given I;. By (A2), this probability distribution depends on I; only through
Uf. We are then allowed to denote this expectation by W, +(Uf, k).

B. Proof of Proposition 3.2:

In what follows, we will derive a closed-form formula for W, r(Uf, k) based on
the log-normality assumption. We will start from the following decomposition:

T—1 +

S,
=y —k| (U

T=t1 T

U, (UL k) = By {[Gor(UY) — kHyr(U})] }

where:
T—1 g
T+1
Gt,T(UlT) =K (H Mr1 g )1[%12k]|U1T
T=t T ‘
and:
T—1
Ht,T(UlT) H mT+11 Sr >k]|U1
T=t
Lemma 1 : If Y| is a bivariate Gaussian vector, with:
Zs
B Z _ my Var Al _ w% pw1W2
Z2 ma Z2 PLW1W2 w%

Elexp(Z1)1,,, ., ] = exp[mi + %%]CI)(ZL—; + pwi), with @ the cumulative normal
distribution function.
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Let us by Q the probability measure corresponding to the above-specified
Gaussian distribution of (Z;, Z3) and define the probability @ by:

dQ w?
() = ez~ m) - 21}

Then, with obvious notation:
w2\ X
El(exp Z1)(11z,>0))] = exp(ma + F)Q[Z2 = 0]
But by Girsanov theorem, we know that under Q, Z is a Gaussian variable
with mean ms + pwiws and variance w2 Therefore:

QZ, >0 =1— @{M] _ q)[@ + pun]
wo (095)

C. A closed-form formula for H;(U]) and bond pricing:

T—1
Ht,T(Ul) E; |exp ZlOgmH—l] >t gi>logk]| 1

T=t

By virtue of assumption A, this expectation is given by lemma 1 with:

T-1 T—1 g
= Z logm,y; and Z, = Zlog ;H —logk
T=t T=t T
SO
T—1 T-1
mi= Z’umrﬂ’mQ - ZMST+1 — logk
T=t T=t
T—1 T-1 T—1
w% = Z O’%’L.,—_'_l Y wg = Z O-%T_'_l? pwlw2 - Z UmST+1 °
T=t T=t T=t
Therefore:
T-1 T—1
1
Hy7(UL) = exp ZumT+l+§Za72nT+1] ) Z Z,ug " logk’+20ms "
T=t T=t r— t S’ 1 T=t

By referring to the notation introduced in proposition 3.2, we first notice that
H;7(UT) can be written as:

Hyr(UT) = B(t, T)® (da(x1))

with z; = log and dy(z;) defined in proposition 3.2 since:

KB(t T)
1 T—1 = 1 T-1 T—1
T(Z s, ,, —log §+Z O'mSTH) — (x+log B(t,T) +Z /~LST+1+Z UmSTH
ZT:t U%r+1 T=t — U’T T=t T=t



But:
T-1

1
[ [% } = exp ZMSTH + QUtT)

Therefore, the above expression can be rewrltten as:

1 1 -
a(xt 2atT+log< [ |U] >+Zam57+l>

= L =4 _1 log (Qms(t, T)é(t’T)> = dy(z) — Ty = da(w)

o4 2 o4 B(t,T)

where dy (), da2(x) and Qns(t, T') correspond to the expressions given in propo-
sition 3.2. _

Finally, it is worth noticing that B(t,T) can be interpreted in terms of bond
pricing. Actually, the general pricing formula (3.1) implies that:

B(t,T) = Ey[my7] = E; [Hy7(U])]

when H; p(UT) is computed in the limit case K = +oo, that is,
H,+(UT) = B(t,T), since KEIEW do(zy) = 400
therefore the bond pricing equation is given by:
B(t,T) = E,[B(t,T)]
D. A closed-form formula for G;7(U{') and stock pricing:

T-1
S‘r 1
Ger(Uf) = E |exp ZlongH +log 5+ Mgz log “ZHL 1>1ogk]|U1T
T=t1 T

But, by virtue of assumption A, this expectation is given by lemma 1 with:
T-1

ST 'r
ZlongH + log +1 and Z, = Zlog 1 — logk

T=t

In other words, with respect to part C above, my and w3 are unchanged while
now:

T-1 T-1 T-1
— E 2 __ E 2 2 _ § 2
my = (/‘I/m-,-+1 +ILLS‘,-+1)7 wl - (O-m7+1+0-5-r+1+20-m51-+1)7 p(.U1CL)2 - (O-mST+1+O-ST+1)
T=t T=tL T=t
Therefore:

T=t1 T=tL

T-—1 T-1
thT(UlT) = eXp [Z(lu/m,-+1 + /‘I’S.,-+1) + 2(0-72’)’17+1 + O-%T+1 + 2O-m5.,-+1)] X



But comparison with the above expressions of H;r(UT) and F; [g—ﬂUtT ] we
see that:

T-1 T-1
~ 1
Gir(UT) = B(t,T)exp [Z(Mmm + s, ) + 3 > (0%, + 2UmST+1)] ® (da(zt) +04,7)
T=t T=t
S T—1
~ T
= B(@,T)E {EW?:T] exp ;O—msr+1] P (dy ()

that is,
Gir(UT) = Qus(t, T)® (dy(z4))

Finally, it is worth noticing that Q,,s(¢,T) can be interpreted in terms of stock
pricing. Actually the stock pricing equation corresponds to the general pricing
formula (3.1) in the limit case K = 0, that is:

St — Et [Sth,T(UiT)}

where
Gt,T(UlT) = Qms(t,T), since Il(lInO dl(l't) = 400

In other words, the stock pricing equation can be written:
1= Et [QmS(ta T)]

E. Option pricing formula:
We conclude from parts A, B and C above that the option pricing formula 7,
is given by:

Iy T K T
5 = E; |:Gt,T(U1 ) — EHLT(Ul )
= E; |Qms(t, T)P® (di(z;)) — %?T)q) <d2(xt))]

which coincides with the announced formula of proposition 3.2 since:

KB(t,T) _ B(,T)KB(tT) _B(tT) exp(—a1)

3 Bt T) S B(t,T)
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Figure 2: Maturity and stochastic volatility effects when B(t,T) is deterministic and

Qxy(t,T) = 1. Left panel: The effect of a decrease in the coefficient of variation of the
volatility results in flatter smiles. Right panel: As the option’s maturity increases, the
smile flattens. The most curved smiles in each panel are in fact identical.
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Figure 3: Maturity effects when B(t,T) is deterministic and Q xy (¢,T) # 1. The solid
lines are the implied volatility curves for a one-period option whereas the dashed lines
are those for an option with a two-period maturity. In each case the symmetric smiles
are those resulting from preference-free option pricing a la Hull-White. The preference-
free smile is easily recognizable as the one centered on zero. The left and right panels
are associated with states 1 and 2, respectively, as the current state.
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Figure 6: Average duration effects when p;; < p;;. The dashed lines represent an increase
in p;;. The left and right panels are associated with states 1 and 2, respectively, as the

current state.
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Figure 7: Option prices and the correlation between consumption and dividends. The
solid lines represent the schedule of option prices across moneyness when the correlation
between consumption and dividends is one.
represented by the dashed lines. The left and right panels are associated with states 1

and 2, respectively, as the current state.
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Figure 8: Leverage effects and the volatility smile. The dashed lines show the effect on
the volatility smile of an absence of a leverage effect through the consumption process.
The solid lines are the benchmark case of leverage effects through both consumption
and dividend processes. The left and right panels are associated with states 1 and 2,

respectively, as the current state.
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The solid lines are the benchmark case of leverage effects through both consumption
and dividend processes. The left and right panels are associated with states 1 and 2,
respectively, as the current state.
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Figure 10: The role of preferences. The solid lines are the volatility smiles for the
following configuration of preference parameters: v = 1, p = —1, @ = —1; whereas
the dashed lines are for v = 1/10, p = —10, @« = —1. The left and right panels are

associated with states 1 and 2, respectively, as the current state.
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Figure 11: The role of preferences. The solid lines are the volatility smiles for the
following configuration of preference parameters: v = 1/10, p = —10, « = —1. The
dashed lines show the volatility smiles for the same preference parameter configuration
but for an option whose maturity is increased by one period. The left and right panels
are associated with states 1 and 2, respectively, as the current state.
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Figure 12: Intertemporal substitution and option pricing. The left panel plots

Ey {Sy(D(aff™) — QXy(t,T)q)(leBS))} ; that is, the difference between the first parts
of the preference-free and the generalized option pricing formula in which preferences
matter. The difference between the second parts of these formulas,

E; {K(B(t,T)CI)(di) — E(t,T)@(ngS))}, is plotted in the right panel. The solid

lines represent the case where B(t,T') is stochastic whereas the dashed lines represent
the case for B(t,T') deterministic.
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Figure 13: Relative pricing errors. The lines plot the relative difference across moneyness
between preference-free option prices and option prices in which preferences matter; that
is, the graphs report the relative pricing error that is committed by using a preference-
free pricing formula in a world in which preferences matter for option prices. The
three lines are for options whose maturity increases by one period with the steepest
representing the benchmark one-period option. The left and right panels are associated
with states 1 and 2, respectively, as the current state.
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