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RÉSUMÉ 

 

 Suzumura montre qu'une relation binaire peut être étendue à un ordre faible si et 

seulement si elle est cohérente. La cohérence n'est cependant ni nécessaire ni 

suffisante pour qu'une relation binaire semi-continue supérieurement puisse être 

étendue à un ordre faible semi-continu supérieurement. Jaffray montre qu'une relation 

binaire asymétrique (ou réflexive) transitive et semi-continue supérieurement peut être 

étendue à un ordre strict (ou faible) semi-continu supérieurement. Nous proposons des 

conditions qui assurent qu’une relation cohérente, plutôt que transitive, peut être 

étendue en respectant la semi-continuité supérieure. Si la relation est asymétrique, il 

suffit qu'elle soit cohérente et semi-continue supérieurement. Pour les relations qui ne 

sont pas asymétriques, nous prouvons un théorème d'extension qui utilise une condition 

de cohérence supplémentaire et un autre qui utilise une condition de continuité 

supplémentaire. 

 

Mots clés : extensions, semi-continuité supérieure, cohérence 

 

 

 

ABSTRACT 

 

 Suzumura shows that a binary relation has a weak order extension if and only if it 

is consistent. However, consistency is demonstrably not sufficient to extend an upper 

semi-continuous binary relation to an upper semicontinuous weak order. Jaffray proves 

that any asymmetric (or reflexive), transitive and upper semicontinuous binary relation 

has an upper semicontinuous strict (or weak) order extension. We provide sufficient 

conditions for the existence of upper semicontinuous extensions of consistent rather 

than transitive relations. For asymmetric relations, consistency and upper semicontinuity 

suffice. For more general relations, we prove one theorem using a further consistency 

property and another with an additional continuity requirement. 

 

Key words : extensions, upper semicontinuity, consistency 
 
 



1 Introduction

It often makes sense to model preferences as binary relations that are not complete.

Among many plausible reasons for allowing for incompleteness, Aumann (1962) lists the

extreme complexity and the highly hypothetical nature of certain choice problems.

One way of assessing whether a preference relation is rational is to check whether it

can be extended to a transitive and complete relation. Szpilrajn (1930) proves that every

asymmetric and transitive relation has a strict order extension, and Hansson (1968) shows

that every reflexive and transitive relation possesses a weak order extension. For detailed

proofs of those results, see Fishburn (1970, pp. 16–18 and 1973, pp. 198–199, resp.);

generalizations are discussed in Dushnik and Miller (1941), Donaldson and Weymark

(1998), Duggan (1999) and Bossert (1999).

It turns out, however, that some binary relations that are not fully transitive may

be extended as well. Suzumura (1976 and 1983, pp. 16–17) shows that a necessary and

sufficient condition for the existence of a weak order extension is that the binary relation

to be extended be consistent. Consistency requires that no preference cycle can contain

a strict preference.

If a preference relation is defined on a topological space, it is of interest to extend

it in a way that preserves its continuity properties. In particular, the existence of best

elements in compact sets is guaranteed if a transitive and complete extension is upper

semicontinuous. Jaffray (1975) proves that any upper semicontinuous and transitive re-

lation possesses an upper semicontinuous strict order extension. Moreover, he shows that

upper semicontinuous, reflexive and transitive relations have upper semicontinuous weak

order extensions.

This paper investigates to what extent binary relations that are not fully transitive

possess upper semicontinuous extensions. Since consistency is necessary for the existence

of transitive and complete extensions, we focus on consistent relations. After stating

Jaffray’s result on extending asymmetric, transitive and upper semicontinuous relations,

we prove three extension theorems. First, we weaken transitivity to consistency and show

that the conclusion of Jaffray’s theorem—the existence of an upper semicontinuous strict

order extension—remains true. Because asymmetry is a very restrictive assumption in

many economic environments (especially in conjunction with a continuity requirement),

we examine the extent to which the asymmetry assumption can be dispensed with in

the presence of consistency. However, for relations that are not necessarily asymmetric,

consistency and upper semicontinuity together are not sufficient for the existence of an
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upper semicontinuous weak order extenson, and we illustrate this observation with an

example.

We provide two sets of sufficient conditions for the existence of an upper semicontin-

uous weak order extension. The first is obtained by adding a property we call IP&PI-

comparability to consistency and upper semicontinuity. This axiom requires that when-

ever there is a preference chain of length two involving one strict preference and one

indifference, the first and last elements in the chain must be comparable.

Whereas IP&PI-comparability is a consistency-type condition, an alternative suffi-

ciency result utilizes a further continuity axiom in addition to consistency and upper

semicontinuity. This IP&PI-continuity property requires that, for any alternative x, the

set of alternatives y such that there exists a z which is indifferent to (resp. strictly pre-

ferred by) x and strictly preferred to (resp. indifferent) to y is open. As is the case

for IP&PI-comparability, IP&PI-continuity can be added to consistency and upper semi-

continuity in order to obtain a set of sufficient conditions for the existence of an upper

semicontinuous weak order extension.

2 Notation and basic concepts

The set of positive (nonnegative) integers is denoted by IN (IN0). Let X be a nonempty

universal set of alternatives, and letR ⊆ X×X be a binary relation onX. The asymmetric
factor P (R) of R is given by

(x, y) ∈ P (R)⇔ (x, y) ∈ R and (y, x) �∈ R

for all x, y ∈ X. The symmetric factor I(R) of R is defined by letting, for all x, y ∈ X,

(x, y) ∈ I(R)⇔ (x, y) ∈ R and (y, x) ∈ R.

The noncomparable factor N(R) of R is defined by

(x, y) ∈ N(R)⇔ (x, y) �∈ R and (y, x) �∈ R

for all x, y ∈ X.
The following are some standard properties commonly imposed on binary relations.

Reflexivity: For all x ∈ X, (x, x) ∈ R.

Asymmetry: For all x, y ∈ X, (x, y) ∈ R⇒ (y, x) �∈ R.

Transitivity: For all x, y, z ∈ X, [(x, y) ∈ R and (y, z) ∈ R]⇒ (x, z) ∈ R.
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Completeness: For all x, y ∈ X such that x �= y, (x, y) ∈ R or (y, x) ∈ R.

Let D = {(x, x) | x ∈ X} denote the diagonal relation on X. The transitive closure
of R ⊆ X ×X is denoted by R, that is, for all x, y ∈ X, (x, y) ∈ R if there exist K ∈ IN
and x0, . . . , xK ∈ X such that x = x0, (xk−1, xk) ∈ R for all k ∈ {1, . . . , K} and xK = y.
Clearly, R is transitive and, because the case K = 1 is included, it follows that R ⊆ R.
For a relation R ⊆ X × X, R∗ ⊆ X × X is an extension of R if R ⊆ R∗ and

P (R) ⊆ P (R∗). If, in addition, R∗ is reflexive, transitive and complete, R∗ is called
a weak order extension of R. Analogously, for an asymmetric relation R ⊆ X × X, a
relation R∗ ⊆ X ×X is a strict order extension of R if R∗ is an asymmetric, transitive
and complete relation such that R ⊆ R∗.
For simplicity of notation, we use the term topological space to refer to a set X on

which a topology is defined rather than to the pair consisting of X and an associated

topology. If X is a topological space, we can define the property of upper semicontinuity

for a relation R ⊆ X ×X.

Upper semicontinuity: For all x ∈ X, the set {y ∈ X | (x, y) ∈ P (R)} is open in X.

3 Extending asymmetric relations

We begin with a restatement of the part of Jaffray’s (1975) extension theorem that is

relevant for our analysis. A proof can be found in Jaffray (1975, pp. 398–401).

Theorem 1 Let X be a topological space, and let R ⊆ X × X be a binary relation
on X. If R is asymmetric, transitive and upper semicontinuous, then R has an upper

semicontinuous strict order extension R∗ ⊆ X ×X.

In Jaffray’s formulation, an additional order denseness property is imposed to obtain a

corresponding property of R∗. Because we focus on the extension part of his theorem,

this assumption is not required for our purposes.

Our first generalization of Jaffray’s result retains asymmetry but relaxes the transitiv-

ity assumption. In particular, we show that transitivity can be weakened to consistency.

This axiom is necessary and sufficient for the existence of a transitive and complete exten-

sion, even without requiring that any continuity properties be preserved by the extension.

See Suzumura (1976, 1983) for this observation. Consistency requires that any preference

cycle must be a cycle involving indifference only.
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Consistency: For all x, y ∈ X, for all K ∈ IN and for all x0, . . . , xK ∈ X, if x = x0,
(xk−1, xk) ∈ R for all k ∈ {1, . . . , K} and xK = y, then (y, x) �∈ P (R).

For an asymmetric relation, consistency is equivalent to P-acyclicity, which requires that

P (R) does not exhibit cycles of any finite length. For relations that are not necessarily

asymmetric, consistency implies acyclicity but the converse implication is not true.

We obtain

Theorem 2 Let X be a topological space, and let R ⊆ X × X be a binary relation
on X. If R is asymmetric, consistent and upper semicontinuous, then R has an upper

semicontinuous strict order extension R∗ ⊆ X ×X.

Proof The proof proceeds by showing that, given the properties of R assumed in the

theorem statement, the transitive closure R of R is asymmetric and upper semicontinuous.

Theorem 1 then allows us to conclude that R has an upper semicontinuous strict order

extension R∗ and, because R ⊆ R, R∗ is an upper semicontinuous strict order extension
of R as well. Therefore, the proof is complete after establishing those two properties of

R.

To prove that R is asymmetric, suppose, by way of contradiction, that there exist

x, y ∈ X, K,L ∈ IN and x0, . . . , xK , z0, . . . , zL ∈ X such that x = x0, (xk−1, xk) ∈ R for
all k ∈ {1, . . . , K}, xK = y, y = z0, (z�−1, z�) ∈ R for all � ∈ {1, . . . , L} and zL = x.
Because R is asymmetric, we must have (xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K} and
(z�−1, z�) ∈ P (R) for all � ∈ {1, . . . , L}. Letting M = K + L − 1, wm = xm for all
m ∈ {0, . . . , K}, wm = zm−K for all m ∈ {K + 1, . . . , K + L − 1} and w = wK+L−1, we
obtain x = w0, (wm−1, wm) ∈ P (R) for all m ∈ {1, . . . ,M}, wM = x and (w, x) ∈ P (R),
contradicting the consistency of R.

To show that R is upper semicontinuous, let x ∈ X be arbitrary, and let y ∈ X be
such that (x, y) ∈ P (R). By definition of R and by the asymmetry of R, there exist
K ∈ IN and x0, . . . , xK ∈ X such that x = x0, (xk−1, xk) ∈ P (R) for all k ∈ {1, . . . , K}
and xK = y . Because R is upper semicontinuous, the set {z ∈ X | (xK−1, z) ∈ P (R)}
is open. Furthermore, xK = y ∈ {z ∈ X | (xK−1, z) ∈ P (R)}. Therefore, there exists a
neighborhood N (y) of y such that y′ ∈ {z ∈ X | (xK−1, z) ∈ P (R)} for all y′ ∈ N (y).
Thus, (x, y′) ∈ P (R) for all y′ ∈ N (y), which establishes that {z ∈ X | (x, z) ∈ P (R)} is
open. Thus, R is upper semicontinuous.

Unlike consistency, upper semicontinuity of an asymmetric relation R is not necessary

for the existence of an upper semicontinuous strict order extension of R, as demonstrated

in the following example.
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Example 1 Let X be the open interval ]0, 4[ and suppose the relation R is defined by

R = {(x, y) ∈ X ×X | x > y} \ {(3, y) | y ∈ ]1, 2[ }.

Because {y ∈ X | (3, y) ∈ P (R)} = ]0, 1] ∪ [2, 3[, R is not upper semicontinuous. Never-
theless, the relation

R∗ = {(x, y) ∈ X ×X | x > y}

is an upper semicontinuous strict order extension of R.

4 Extending general relations

As mentioned in Remark 4 of Jaffray (1975, p. 402), the conclusion of Theorem 1 remains

true if the assumption that R is asymmetric is dropped (reflexivity can be added in its

place but this is not necessary). In this section, we generalize this result by considering

weakenings of transitivity.

First, note that upper semicontinuity together with consistency is not sufficient for

the existence of an upper semicontinuous weak order extension if R is not assumed to

be asymmetric. Though consistency implies the existence of a weak order extension,

consistency and upper semicontinuity together are not sufficient to guarantee that an

upper semicontinuous extension can be found. Consider the following example.

Example 2 Let X = ]0, 4[ and suppose the relation R is defined by

R = {(1, x) | x ∈ X \ {3}} ∪ {(x, 1) | x ∈ ]3, 4[ } ∪ {(2, 3), (3, 2)}.

Because P (R) = {(1, x) | x ∈ ]0, 1[ ∪ ]1, 3[ }, R clearly is consistent. Furthermore, we
have {y ∈ X | (1, y) ∈ P (R)} = ]0, 1[ ∪ ]1, 3[ and {y ∈ X | (x, y) ∈ P (R)} = ∅ for
all x ∈ X \ {1}, which immediately implies that R is upper semicontinuous. Suppose
R∗ is a weak order extension of R. By definition of an extension, (1, 2) ∈ P (R) and
(2, 3) ∈ I(R) imply (1, 2) ∈ P (R∗) and (2, 3) ∈ I(R∗). Because R∗ is transitive, we
must have (1, 3) ∈ P (R∗). Because R∗ is a weak order extension of R, it follows that
]0, 1[ ∪ ]1, 3] ⊆ {y | (1, y) ∈ P (R∗)} and x �∈ {y | (1, y) ∈ P (R∗)} for all x ∈ ]3, 4[. Hence,
we obtain {y | (1, y) ∈ P (R∗)} = ]0, 1[ ∪ ]1, 3] which is not open in X. Therefore, R∗

cannot be upper semicontinuous.

In order to obtain a set of sufficient conditions for the existence of an upper semi-

continuous weak order extension, we add the following axiom to consistency and upper

semicontinuity.
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IP&PI-comparability: (i) For all x, y, z ∈ X, if (x, y) ∈ I(R) and (y, z) ∈ P (R), then
(x, z) �∈ N(R).
(ii) For all x, y, z ∈ X, if (x, y) ∈ P (R) and (y, z) ∈ I(R), then (x, z) �∈ N(R).

IP&PI-comparability is weaker than the conjunction of two of Sen’s (1969) weakened

transitivity conditions requiring that, whenever (x, y) ∈ R and (y, z) ∈ R with at least
one strict preference, we have (x, z) ∈ P (R). Note that Sen’s conditions have strict prefer-
ences in the consequent rather than merely comparability. In the presence of consistency,

IP&PI-comparability and the conjunction of Sen’s axioms IP and PI are equivalent.

Now we can prove

Theorem 3 Let X be a topological space, and let R ⊆ X × X be a binary relation on
X. If R is consistent, IP&PI-comparable and upper semicontinuous, then R has an upper

semicontinuous weak order extension R∗ ⊆ X ×X.

Proof Suppose R is consistent, IP&PI-comparable and upper semicontinuous. The

proof proceeds as follows. After establishing a consequence of consistency and IP&PI-

comparability, we show that there exists an asymmetric, consistent and upper semicon-

tinuous relation on the quotient set of X with respect to the transitive closure I(R) ∪D
of I(R) ∪D. Then we invoke Theorem 2 to establish the existence of an upper semicon-
tinuous strict order extension of that relation. Finally, we use this relation to define an

upper semicontinuous weak order extension of R.

Step 1 We begin by showing that consistency and IP&PI-comparability imply the fol-

lowing condition.

IP&PI-transitivity: (i) For all x, y, z ∈ X, if (x, y) ∈ I(R) ∪D and (y, z) ∈ P (R), then
(x, z) ∈ P (R).
(ii) For all x, y, z ∈ X, if (x, y) ∈ P (R) and (y, z) ∈ I(R) ∪D, then (x, z) ∈ P (R).

To prove part (i) of IP&PI-transitivity, let x, y, z ∈ X be such that (x, y) ∈ I(R) ∪D
and (y, z) ∈ P (R). This implies that there exist K ∈ IN and x0, . . . , xK ∈ X such that
x = x0, (xk−1, xk) ∈ I(R) ∪ D for all k ∈ {1, . . . , K} and xK = y. Consistency implies
(z, xK−1) �∈ R. IP&PI-completeness implies (xK−1, z) �∈ N(R). Therefore, we must have
(xK−1, z) ∈ P (R). Repeated application of this argument yields (x, z) ∈ P (R). The proof
of part (ii) is analogous.

Step 2 Clearly, I(R) ∪D is an equivalence relation. Let X/I(R) ∪D be the quotient set
of X with respect to I(R) ∪D and, for x ∈ X, let Ix = {y ∈ X | (x, y) ∈ I(R) ∪D}. We
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endow X/I(R) ∪D with the identification topology and, thus, a set A ⊆ X/I(R) ∪D is
open if and only if the set {x ∈ X | Ix ∈ A} is open.

Step 3 Define a relation 	 on X/I(R) ∪D as follows. For all A,B ∈ X/I(R) ∪D,

(A,B) ∈ 	 ⇔ ∃a ∈ A, b ∈ B such that (a, b) ∈ P (R).

Step 4 Next, we show that 	 has the required properties.

Step 4.a We begin by demonstrating that 	 is an asymmetric relation, that is,

P (	) = 	 . (1)

That P (	) ⊆ 	 is immediate. To prove the converse set inclusion, suppose that A,B ∈
X/I(R) ∪D are such that (A,B) ∈ 	. If (A,B) �∈ P (	), it follows that (B,A) ∈
	. By definition, there exist a, ā ∈ A and b, b̄ ∈ B such that (a, b̄) ∈ P (R) and
(b, ā) ∈ P (R). Since A and B are equivalence classes of I(R) ∪D, (ā, a) ∈ I(R) ∪D
and (b̄, b) ∈ I(R) ∪D. Now IP&PI-transitivity implies (a, b) ∈ P (R) and (b, a) ∈ P (R),
a contradiction. This proves (1).

Step 4.b To show that 	 is consistent, suppose, by way of contradiction, that there
exist A,B ∈ X/I(R) ∪D, K ∈ IN and A0, . . . , AK ∈ X/I(R) ∪D such that A = A0,
(Ak−1, Ak) ∈ 	 for all k ∈ {1, . . . , K}, AK = B and (B,A) ∈ P (	). There exist
ak, āk ∈ Ak for all k ∈ {0, . . . , K} such that (ak−1, āk) ∈ P (R) for all k ∈ {1, . . . , K} and
(aK , ā0) ∈ P (R). Consider any k ∈ {1, . . . , K}. If āk = ak, we have (ak−1, ak) ∈ P (R)
by definition. If āk �= ak, it follows that (āk, ak) ∈ I(R) ∪D because āk and ak are
in the same equivalence class Ak according to I(R) ∪D, and IP&PI-transitivity implies
(ak−1, ak) ∈ P (R). Therefore, we obtain (ak−1, ak) ∈ P (R) in all cases. Analogously, it
follows that we must have (aK , a0) ∈ P (R). But this contradicts the consistency of R.

Step 4.c To prove that 	 is upper semicontinuous, we have to show that the set

{B ∈ X/I(R) ∪D | (A,B) ∈ P (	)}

which, by (1), is equal to {B ∈ X/I(R) ∪D | (A,B) ∈ 	}, is open for all A ∈
X/I(R) ∪D. Let A ∈ X/I(R) ∪D. By definition, {B ∈ X/I(R) ∪D | (A,B) ∈ 	}
is open if and only if

{x ∈ X | Ix ∈ {B ∈ X/I(R) ∪D | (A,B) ∈ 	}} (2)

is open. The set in (2) is equal to {x ∈ X | (A, Ix) ∈ 	} which, in turn, is equal to
{x ∈ X | ∃a ∈ A, b ∈ Ix such that (a, b) ∈ P (R)}. Let a0 ∈ A be arbitrary. Because A
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is an equivalence class according to I(R) ∪D, (a0, a) ∈ I(R) ∪D and (a, a0) ∈ I(R) ∪D
for all a ∈ A. By part (i) of IP&PI-transitivity, we have

(a, b) ∈ P (R)⇔ (a0, b) ∈ P (R) (3)

for all a ∈ A and for all b ∈ Ix. Analogously, because Ix is an equivalence class according
to I(R) ∪D, (b, x) ∈ I(R) ∪D and (x, b) ∈ I(R) ∪D for all b ∈ Ix. Now part (ii) of
IP&PI-transitivity implies

(a0, b) ∈ P (R)⇔ (a0, x) ∈ P (R) (4)

for all b ∈ Ix. (3) and (4) together imply

{x ∈ X | ∃a ∈ A, b ∈ Ix such that (a, b) ∈ P (R)} = {x ∈ X | (a0, x) ∈ P (R)}.

Because R is upper semicontinuous, the latter set is open and, consequently, 	 is upper
semicontinuous as well.

Step 5 By Theorem 2, there exists an upper semicontinuous strict order extension 	∗

of 	. Let 	0 = 	∗ ∪{(A,A) | A ∈ X/I(R) ∪D}. Clearly, 	0 is a reflexive, transitive,
complete and upper semicontinuous relation on X/I(R) ∪D. Now define the relation R∗

on X as follows. For all x, y ∈ X,

(x, y) ∈ R∗ ⇔ (Ix, Iy) ∈ 	0 .

Step 6 It remains to be shown that R∗ has the desired properties.

Step 6.a R∗ is reflexive by definition, and R is transitive and complete because 	0 is
transitive and complete.

Step 6.b To prove that R∗ is a weak order extension of R, it is sufficient to show that

I(R) ⊆ I(R∗) and P (R) ⊆ P (R∗). Let (x, y) ∈ I(R). It follows that (x, y) ∈ I(R) ∪D
and, thus, Ix = Iy. Because 	0 is reflexive, it follows that (Ix, Iy) ∈ I(	0) and, thus,
(x, y) ∈ I(R∗). If (x, y) ∈ P (R), we obtain (Ix, Iy) ∈ P (	0) and, by definition, (x, y) ∈
P (R∗).

Step 6.c Finally, we prove that R∗ is upper semicontinuous. Let x ∈ X. We have

{y ∈ X | (x, y) ∈ P (R∗)} = {y ∈ X | (Ix, Iy) ∈ P (	0)}
= {y ∈ X | Iy ∈ {B ∈ X/I(R) ∪D | (Ix, B) ∈ P (	0)}}
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which is open if and only if {B ∈ X/I(R) ∪D | (Ix, B) ∈ P (	0)} is open. Because 	0 is
upper semicontinuous, the latter set is open and, consequently, R∗ is upper semicontinu-

ous.

The axioms used in Theorem 3 are independent, as demonstrated in the following

examples.

Example 3 Let X = ]0, 4[ and

R = {(x, y) | x ∈ ]0, 1[ and y ∈ ]1, 2[ }
∪ {(x, y) | x ∈ ]1, 2[ and y ∈ ]2, 3[ }
∪ {(x, y) | x ∈ ]2, 3[ and y ∈ ]0, 1[ }.

R satisfies IP&PI-comparability and upper semicontinuity but violates consistency.

The relation in Example 2 satisfies consistency and upper semicontinuity but violates

IP&PI-comparability.

Example 4 Let X = ]0, 2[ and

R = {(x, y) | x ∈ ]0, 1[ and y ∈ ]1, 2[ }
∪ {(x, y) | x, y ∈ ]0, 1[ and x ≥ y}
∪ {(x, y) | x, y ∈ [1, 2[ and x ≥ y}.

R satisfies consistency and IP&PI-comparability but violates upper semicontinuity.

An alternative way of obtaining a set of sufficient conditions for the existence of

an upper semicontinuous weak order extension is to add another continuity axiom to

consistency and upper semicontinuity. This continuity property is defined as follows.

IP&PI-continuity: (i) For all x ∈ X, the set {y ∈ X | ∃z ∈ X such that (x, z) ∈
I(R) and (z, y) ∈ P (R)} is open in X.
(ii) For all x ∈ X, the set {y ∈ X | ∃z ∈ X such that (x, z) ∈ P (R) and (z, y) ∈ I(R)}

is open in X.

IP&PI-continuity does not imply and is not implied by upper semicontinuity (see the

remark following the proof of the next theorem). However, if R is reflexive (which we do

not need to assume here), IP&PI-continuity implies upper semicontinuity, as is easy to

verify.

We obtain
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Theorem 4 Let X be a topological space, and let R ⊆ X × X be a binary relation on
X. If R is consistent, upper semicontinuous and IP&PI-continuous, then R has an upper

semicontinuous weak order extension R∗ ⊆ X ×X.

Proof Suppose R is consistent, upper semicontinuous and IP&PI-continuous. We proceed

by constructing an extension R̂ of R that satisfies consistency, IP&PI-comparability and

upper semicontinuity, which allows us to invoke Theorem 3 to conclude that R̂ (and, thus,

R) has an upper semicontinuous weak order extension.

Step 1 Let R0 = R and, for all t ∈ IN, define the relation Rt recursively by

Rt = Rt−1 ∪ {(x, y) | ∃z ∈ X such that (x, z) ∈ I(Rt−1) and (z, y) ∈ P (Rt−1) or
(x, z) ∈ P (Rt−1) and (z, y) ∈ I(Rt−1)}.

Clearly,

Rt−1 ⊆ Rt for all t ∈ IN. (5)

Now let R̂ = ∪t∈IN0Rt.

Step 2 We first prove that

Rt is consistent for all t ∈ IN0. (6)

We proceed by induction. By assumption, R0 = R is consistent. Now suppose Rt−1

is consistent for t ∈ IN. By way of contradiction, suppose Rt is not consistent. Then
there exist x, y ∈ X, K ∈ IN and x0, . . . , xK ∈ X such that x = x0, (xk−1, xk) ∈ Rt for
all k ∈ {1, . . . , K}, xK = y and (y, x) ∈ P (Rt). By definition of Rt, we have, for all
k ∈ {1, . . . , K},

(xk−1, xk) ∈ Rt−1

or

∃yk ∈ X such that (xk−1, yk) ∈ I(Rt−1) and (yk, xk) ∈ P (Rt−1)

or

∃yk ∈ X such that (xk−1, yk) ∈ P (Rt−1) and (yk, xk) ∈ I(Rt−1).

Furthermore, (xK , x0) ∈ Rt implies

(xK , x0) ∈ Rt−1

or

∃y0 ∈ X such that (xK , y0) ∈ I(Rt−1) and (y0, x0) ∈ P (Rt−1)
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or

∃y0 ∈ X such that (xK , y0) ∈ P (Rt−1) and (y0, x0) ∈ I(Rt−1).

Because (x0, xK) �∈ Rt, we obtain

(x0, xK) �∈ Rt−1

and

� ∃w0 ∈ X such that (x0, w0) ∈ I(Rt−1) and (w0, xK) ∈ P (Rt−1)

and

� ∃w0 ∈ X such that (x0, w0) ∈ P (Rt−1) and (w0, xK) ∈ I(Rt−1).

It follows that (xK , x0) ∈ P (Rt−1) and, in all cases, we obtain a contradiction to the
consistency of Rt−1.

Step 3 Next, we show that

P (Rt−1) ⊆ P (Rt) for all t ∈ IN. (7)

Suppose (x, y) ∈ P (Rt−1) for some t ∈ IN. By (5), this implies (x, y) ∈ Rt. Suppose
(y, x) ∈ Rt. By definition, this implies

(y, x) ∈ Rt−1

or

∃z ∈ X such that (y, z) ∈ I(Rt−1) and (z, x) ∈ P (Rt−1)

or

∃z ∈ X such that (y, z) ∈ P (Rt−1) and (z, x) ∈ I(Rt−1).

The first possibility contradicts our hypothesis and the remaining two contradict the

consistency of Rt−1. Therefore, (x, y) ∈ P (Rt).

Step 4 Our next step is to prove

I(R̂) = I(R). (8)

First, we prove by induction that

I(Rt) = I(R) for all t ∈ IN0. (9)

By definition, I(R0) = I(R). Suppose I(Rt−1) = I(R) for some t ∈ IN. Clearly, I(Rt−1) ⊆
I(Rt). Now suppose (x, y) ∈ I(Rt). By definition, (x, y) ∈ Rt implies

(x, y) ∈ Rt−1
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or

∃z ∈ X such that (x, z) ∈ I(Rt−1) and (z, y) ∈ P (Rt−1)

or

∃z ∈ X such that (x, z) ∈ P (Rt−1) and (z, y) ∈ I(Rt−1).

Because (y, x) ∈ Rt as well, we obtain

(y, x) ∈ Rt−1

or

∃w ∈ X such that (y, w) ∈ I(Rt−1) and (w, x) ∈ P (Rt−1)

or

∃w ∈ X such that (y, w) ∈ P (Rt−1) and (w, x) ∈ I(Rt−1).

This implies (x, y) ∈ I(Rt−1) because all other possibilities contradict (6). By the in-
duction hypothesis, it follows that I(Rt) = I(R). To complete the proof of (8), sup-

pose (x, y) ∈ I(R̂). By definition, there exist tx, ty ∈ IN0 such that (x, y) ∈ Rtx and
(y, x) ∈ Rty . Let t = max{tx, ty}. By (5), it follows that (x, y) ∈ Rt and (y, x) ∈ Rt and,
thus, (x, y) ∈ I(Rt) = I(R).

Step 5 As a last preliminary result, we show that

P (R̂) = ∪t∈INP (Rt). (10)

Suppose first that (x, y) ∈ P (R̂). By definition, there exists t′ ∈ IN such that (x, y) ∈ Rt′
and there exists no t′′ ∈ IN such that (y, x) ∈ Rt′′. Therefore, we obtain (y, x) �∈ Rt′ and,
thus, (x, y) ∈ P (Rt′) ⊆ ∪t∈INP (Rt).
Now suppose (x, y) ∈ ∪t∈INP (Rt). Therefore, there exists t′ ∈ IN such that (x, y) ∈ Rt′

and (y, x) �∈ Rt′. By (5), (y, x) �∈ Rt for all t < t′, and by (7), (y, x) �∈ Rt for all t > t′.
Therefore, (y, x) �∈ R̂ and, thus, (x, y) ∈ P (R̂).

Step 6 We now show that R̂ has the desired properties.

Step 6.a In light of (8), to prove that R̂ is an extension of R, it remains to be shown that

P (R) ⊆ P (R̂). Suppose (x, y) ∈ P (R). Because R0 = R, (7) implies that (x, y) ∈ P (Rt)
for all t ∈ IN0. Therefore, (y, x) �∈ R̂, and we obtain (x, y) ∈ P (R̂).

Step 6.b Next, we prove that R̂ satisfies consistency. Suppose not. Then there exist

x, y ∈ X, K ∈ IN and x0, . . . , xK ∈ X such that x = x0, (xk−1, xk) ∈ R̂, xK = y and
(y, x) ∈ P (R̂). By definition of R̂, there exist t1, . . . , tK ∈ IN0 such that (xk−1, xk) ∈ Rtk
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for all k ∈ {1, . . . , K}. By (10), there exists t0 ∈ IN0 such that (xK, x0) ∈ P (Rt0). Let
t = max{t0, . . . , tK}. By (5) and (10), it follows that (xk−1, xk) ∈ Rt for all k ∈ {1, . . . , K}
and (xK , x0) ∈ P (Rt), contradicting (6).

Step 6.c Now we show that R̂ is IP&PI-comparable. To establish part (i) of the property,

suppose that (x, y) ∈ I(R̂) and (y, z) ∈ P (R̂) for some x, y, z ∈ X. By (8), it follows
that (x, y) ∈ I(R). By (10), there exists t ∈ IN0 such that (y, z) ∈ P (Rt). By (9),
(x, y) ∈ I(Rt). Therefore, (x, z) ∈ Rt+1 by definition and, thus, (x, z) ∈ R̂ which implies
(x, z) �∈ N(R̂). The proof of part (ii) is analogous.

Step 6.d To show that R̂ is upper semicontinuous, we begin by establishing that Rt

satisfies upper semicontinuity and IP&PI-continuity for all t ∈ IN0. Again, we proceed by
induction. By assumption, R = R0 is upper semicontinuous and IP&PI-continuous. Now

suppose Rt−1 has those two properties for some t ∈ IN, and let x, y ∈ X be such that
(x, y) ∈ P (Rt). By definition, it follows that

(x, y) ∈ Rt−1

or

∃z ∈ X such that (x, z) ∈ I(Rt−1) and (z, y) ∈ P (Rt−1)

or

∃z ∈ X such that (x, z) ∈ P (Rt−1) and (z, y) ∈ I(Rt−1).

In the first case, the upper semicontinuity of Rt−1 implies that there exists a neighborhood

N (y) of y such that y′ ∈ {w ∈ X | (x, w) ∈ P (Rt−1)} for all y′ ∈ N (y). By (7), it follows
that y′ ∈ {w ∈ X | (x, w) ∈ P (Rt)} for all y′ ∈ N (y). In the second and third cases,
the same conclusion is reached by invoking the IP&PI-continuity rather than the upper

semicontinuity of Rt−1. Thus, the set {w ∈ X | (x, w) ∈ P (Rt)} is open in X for all
x ∈ X and, therefore, Rt is upper semicontinuous. To prove that Rt satisfies part (i)
of IP&PI-continuity, suppose (x, z) ∈ I(Rt) and (z, y) ∈ P (Rt) for some x, y, z ∈ X.
Because Rt is upper semicontinuous, there exists a neighborhood N (y) of y such that
y′ ∈ {w ∈ X | (z, w) ∈ P (Rt)} for all y′ ∈ N (y). Hence, the set {y ∈ X | ∃z ∈
X such that (x, z) ∈ I(R) and (z, y) ∈ P (R)} is open in X for all x ∈ X. The proof that
Rt satisfies part (ii) of IP&PI-continuity is analogous.

Let x ∈ X. By (10),

{y ∈ X | (x, y) ∈ P (R̂)} = {y ∈ X | y ∈ ∪t∈IN{z ∈ X | (x, z) ∈ P (Rt)}}
= ∪t∈IN{y ∈ X | (x, y) ∈ P (Rt)}.
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As shown above, {z ∈ X | (x, z) ∈ P (Rt)} is open in X for all x ∈ X and for all t ∈ IN0
and, thus, {y ∈ X | (x, y) ∈ P (R̂)} is the union of a collection of open sets, which is itself
open. Therefore, R̂ is upper semicontinuous.

Step 7 By Theorem 3, R̂ has an upper semicontinuous weak order extension R∗ and,

because R̂ is an extension of R, R∗ is an upper semicontinuous weak order extension of

R as well.

The same examples as those following Theorem 3 establish that the axioms used in

Theorem 4 are independent.

As mentioned earlier, consistency is not only sufficient but also necessary for the

existence of a transitive and complete extension. However, none of the other axioms used

in Theorems 3 and 4 are necessary for the existence of an upper semicontinuous weak

order extension. Consider the following example.

Example 5 Let X = ]0, 4[ and suppose the relation R is defined by

R = {(x, y) ∈ X ×X | x ≥ y or x, y ∈ [1, 2]} \ {(3, y) | y ∈ ]0, 1[ ∪{2}}.

Because the set {y ∈ X | (3, y) ∈ P (R)} = [1, 2[ ∪ ]2, 3[ is not open, R is not upper
semicontinuous. Furthermore, because (3, 1) ∈ P (R), (1, 2) ∈ I(R) and (3, 2) ∈ N(R),
R is not IP&PI-comparable. Because R is reflexive, the fact that upper semicontinuity is

violated implies that R is not IP&PI-continuous (see the remark following the definition

of IP&PI-continuity). However, the relation

R∗ = {(x, y) ∈ X ×X | x ≥ y or x, y ∈ [1, 2]}

is an upper semicontinuous weak order extension of R.

5 Concluding remarks

In concluding this paper, two remarks are in order. In the first place, noncomparabilities

as discussed in the introduction may be eliminated as the decision maker accumulates

experience, but this process is usually path-dependent: any weak order extension may

be the one finally reached. Thus, an interesting application of our results consists of

combining them with those of Suzumura and Xu (2001). In particular, we examine the

relationship between choices made on the basis of an underlying incomplete and intransi-

tive preference relation and choices that result from various weak order extensions of this

relation.
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Suppose R is a binary relation defined on a topological space X. Let B be the set
of nonempty and compact subsets of X. For all B ∈ B, the set of R-maximal elements
in B is M(R,B) = {x ∈ B | (y, x) �∈ P (R) for all y ∈ B}, and the set of R-greatest
elements in B is G(R,B) = {x ∈ B | (x, y) ∈ R for all y ∈ B}. Let Ω(R) be the set of
all upper semicontinuous weak order extensions of R. According to Suzumura and Xu

(2001), a relation R is choice-functionally recoverable ifM(R,B) = ∪R∗∈Ω(R)G(R∗, B) for
all B ∈ B.
Suppose R is consistent, upper semicontinuous and IP&PI-comparable (resp. IP&PI-

continuous). This implies that the set of R-maximal elements in B is nonempty for all

B ∈ B. Applying our Theorem 3 (resp. Theorem 4), it follows that Ω(R) is nonempty. Now
Theorem 3.2 of Suzumura and Xu (2001) implies that R is choice-functionally recoverable

if and only if ∩R∗∈Ω(R)P (R∗) ⊆ R.
In the second place, we focus in this paper on topological spaces in order to examine

the possibilities of extending incomplete relations in a way that preserves upper semicon-

tinuity. With some additional structure imposed on the universal set under consideration,

further interesting questions could be addressed. For example, in addition to (or instead

of) upper semicontinuity, one might want to require an extension to possess classical eco-

nomic properties of preferences such as monotonicity or convexity. The exploration of

these further issues is left for future research.
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