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We examine several simulation-based estimators for the parame-
ters of a moving average process, including the one initially proposed

by Gouri�eroux, Monfort and Renault (1993) as well as several exten-

sions based on Gallant and Tauchen (1994). The estimators are also
compared and related to procedures recently suggested by Galbraith

and Zinde-Walsh (1994).

Nous examinons plusieurs estimateurs bas�es sur les principes des
m�ethodes de moments simul�es et l'inf�erence indirecte pour des mo-

d�eles de moyenne mobile. Nous �etudions une proc�edure propos�ee

par Gouri�eroux, Monfort et Renault (1993) ainsi que des exten-
sions de l'approche propos�ee par Gallant et Tauchen (1994). Nous

faisons �egalement une comparaison avec les proc�edures de Galbraith

et Zinde-Walsh (1994).
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1. Introduction

There are several estimation procedures for moving average models. A
large class of estimators are likelihood-based and involve (numerical) opti-
mization of the exact or approximate likelihood function1. Another class
relies either on the estimation of a sequence of long autoregressions, as
in Hannan and Rissanen (1982) and Koreisha and Pukkila (1990) or else
involves nonlinear least squares (see, for instance, Fuller (1976) for a discus-
sion). Durbin (1959) suggested �tting an autoregression of �nite order to
the data and deriving an estimate for the MA parameter2. Recently, Gal-
braith and Zinde-Walsh (1994) proposed a related estimator which involves
approximating, in the Hilbert Norm, a MA model by an autoregressive
(AR) model. It uses a minimal Hilbert distance criterion to describe ex-
plicitly a functional form between the MA parameters and the \auxiliary"
AR parameters.

In this paper, we propose several simulated method of moments (SMM)
estimators for the parameters of a Gaussian MA(1) process using a �nite
autoregression. Gouri�eroux, Monfort and Renault (1993) provided a �rst
example of such an estimator. The asymptotically equivalent procedure
of Gallant and Tauchen (1993) is also considered. Hence we propose sev-
eral alternatives SMM estimators and conduct a comparative study through
Monte Carlo simulations. One advantage of SMM estimators is that, unlike
the Durbin and Galbraith/Zinde-Walsh procedures, they do not require an
explicit relation between the MA and AR parameters. Another advantage,
stressed by Gouri�eroux et al. (1993) is that simulation based method ap-
pear to correct in small samples the bias due the lag truncation in the AR
representation. Moreover, we also reconsider the Galbraith/Zinde-Walsh
(G/ZW) estimator and suggest an alternative asymptotic least squares
(ALS) procedure that improves its large sample properties. In general, the
discussion has focused on the performance of estimators near the boundary
of the non-invertibility region where procedures like maximum likelihood
estimation (MLE) appear to behave poorly in �nite samples. Our Monte
Carlo evidence shows that the SMM estimators perform better than Durbin
and G/ZW's estimators for values of the MA parameter near unity.

1See for instance in Box and Jenkins (1976), Godolphin (1977), Osborn (1977), Ansley

(1979) and Ansley and Newbold (1980).
2This relatively straightforward procedure has attracted considerable attention in

the literature; see, for example, McClave (1973) or Mentz (1977) for a discussion of a

statistical properties of Durbin's estimator.
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The paper is organized as follows. In section 2, we present our nota-
tional framework, introduce the di�erent SMM and ALS estimators and
discuss their asymptotic distributional properties. In section 3, we report
simulation results comparing the �nite sample performance of the di�erent
estimators. Section 4 concludes.

2. Notation and Proposed Estimators

For convenience we shall devote our attention exclusively to the �rst order
univariate MA model. Extensions to more general models will be discussed
in Section 4. The idea to use simulation-based estimators for MA models
as suggested in Gouri�eroux et al. (1993) is further explored in several
directions in this section. Three classes of estimators for the MA parameter
will be considered. The �rst is based on a score principle as put forward by
Gallant and Tauchen (1993). The second follows Gouri�eroux et al. and can
be characterized as a SMM estimator based on a Wald principle. Finally,
we reconsider the G/ZW estimator and replace their OLS procedure by an
ALS estimator3. We �x notation in section 2.1. Section 2.2 is devoted to
the SMM estimators while 2.3 covers the ALS estimators. In section 2.4,
we discuss the symptotic distributions of the proposed estimators.

2.1. Notation and de�nitions

We consider the time series model

Xt = ut � � ut�1; t = 1; : : : ; T; (2.1)

where 0 < j�j < 1 and the ut are independent, identically distributed, nor-
mal random variables with Eut = 0; Eu2t = 1 for all t. The approximating
AR(p) model will be denoted as

Xt = �1Xt�1 + � � �+ �pXt�p + "t; t = 1; : : : ; T; (2.2)

where "t is a white noise. For a sample of size T , let

�̂
p

(T )
=
h
�̂; : : : ; �̂p

i
; (2.3)

where �̂i are the ordinary least squares estimates of �i; i = 1; : : : ; p; in
the regression of Xt on Xt�1; : : : ; Xt�p. The usual central limit theorem

arguments yield that
�
�̂i � �i

�
is Op

�
T�

1
2

�
where

3See Gouri�eroux, Monfort and Trognon (1985) for discussion.
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�i = � (��)i
�
1� �2(p�i+1)

1� �2(p+1)

�
; i = 1; : : : ; p4 (2.4)

2.2. SMM estimators of the MA parameter

For a given value of the MA in (2.1), we can obtain H simulated pathsh
~Xh
1 (�) ; : : : ;

~Xh
T (�)

i
; h = 1; : : : ;H; (2.5)

based on independent drawings of ut;
�
~uh1 ; : : : ; ~u

h
T

�
; h = 1; : : : ;H. For each

of these paths, de�ne

~�hp
(T ) (�) =Argmin

�

~Q
(p)
T;h (�) ; h = 1; : : : ;H; (2.6)

where

~Q(p)
T;h (�) = �Tt=p+1

h
~Xh
t � �1 ~X

h
t�1 � : : :� �p ~X

h
t�p

i2
; h = 1; : : : ;H: (2.7)

In other words, ~�hp
(T ) minimizes the least squares criterion where the

observed values are replaced by the simulated ones. Moreover, we de�ne
an estimator for � as follows:

~�pTH (�) =
1

H

HX
h=1

~�hp
(T ) (�) : (2.8)

Alternatively, we can obtain a sequence of N = TH simulated values
~X1; : : : ; ~XN based on N drawings of the white noise process ut, to which
one would apply the following estimation criterion

~Q
(p)
N (�) = �Nt=p+1

h
~Xt � �1 ~Xt�1; : : : ; �p ~Xt�p

i2
(2.9)

Once again one can apply the criterion appearing in (2.6) and de�ne

�
p
N (�) =Argmin

�

~Q
(p)
N (�). We can now de�ne two indirect estimators of �

as follows:

�̂SWTHp =Argmin
�

�
�̂
p

(T ) � �̂
p
TH (�)

�
0


̂T
�
�̂
p

(T ) � �̂
p
TH (�)

�
; (2.10)

4For later use, �i in (2.4) will be denoted as a function of �, namely �i = �i (�) :
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where �̂p(T ) is de�ned as in (2.3) and ~�pTH as in (2.8) while the weighting

matrix is obtained as:


̂T =

" 
@Q̂

(p)
T

@�

! 
@Q̂

(p)
T

@�

!
0
#�1

; (2.11)

using the sample data to compute

Q̂
(p)
T =

TX
t=p+1

�
Xt � �̂1Xt�1 � � � � � �̂pXt�p

�2
: (2.12)

Replacing ~�pTH (�) by ~�pN (�) in section (2.10) yields a second SMM
estimator, namely

�̂SWNp =Argmin
�

�
�̂
p

(T ) �
~�pN (�)

�
0


̂T
�
�̂
p

(T ) �
~�pN (�)

�
: (2.13)

Both estimators bear the superscript SW indicating that they are simu-
lation-based exploiting a Wald principle. Gouri�eroux et al. (1993) show
that the estimators de�ned in (2.10) and (2.13) have the same asymptotic
distributions given appropriate regularity conditions. They also argue that
in this particular application, the e�ciency loss resulting from replacing 
̂T
by an identity matrix is marginal and therefore suggest to use the latter in
practical applications. A third version of the indirect estimator, following
Gallant and Tauchen (1993), can be formulated as follows:

�̂SSNp =Argmin
�

"
� ~Q

(p)
N

@�
(�)

#
0


̂T

"
� ~Q

(p)
N

@�
(�)

#
: (2.14)

The advantage of this estimator is that it does not involve estimating
� from the simulated data as it relies on the score function, hence the
superscript SS. A fourth estimator, denoted �̂SSTHp , can also be de�ned by
combining arguments in (2.10) and (2.14).

2.3. ALS estimators of the MA parameter

The simulation-based estimators discussed in the previous section lead also
to a class of estimators not involving simulation yet based on methods of
moments principles. For instance, G/ZW proposed an estimator of � based

on �̂(T ) and the following approximate explicit relation inferred from the
Yule-Walker equations:
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�̂G=ZW = �̂1: (2.15)

They utilize the approximation (2.4) to evaluate the estimator's asymp-
totic bias. Obviously, this just identi�ed estimator could be replaced by an
ALS estimator exploiting the result in (2.4). Namely consider the estimator
de�ned as

�̂Ap =Argmin
�

�
�̂
p

(T ) � �p (�)
�
0


̂T
�
�̂
p

(T ) � �p (�)
�
; (2.16)

where �p (�) = (�1 (�) ; : : : ; �p (�))
0 is de�ned in (2.4). Again, we also con-

sider not using 
̂T as a weighting matrix and rather rely on an asymptoti-
cally less e�cient procedure. Both estimators have a standard asymptotic
distribution as described in Gouri�eroux, Monfort and Trognon (1985). One

can readily see the direct relationship between the �̂Ap and the simulation-

based estimators �̂SWTHp and �̂SWNp . The former relies on the asymptotic

Op

�
T�

1
2

�
expansion typically used in the central limit theorem develop-

ment of the OLS estimator. The latter two estimators replace the �p (�)
expression by simulated or averages of simulated estimators. This di�erence
is important to understand the �nite sample behavior of the estimators.

2.4. Asymptotic distributions of suggested estimators

In this section we briey summarize without any formal proof the asymp-
totic distributions of the estimators discussed in sections 2.2 and 2.3. To
simplify the presentation, consider the following notation �̂ij (ST ), with
i = SW , SS and A; j = THp, Np (for SW and SS) and j = p (for i = A)
while ST represents the weighting matrix satisfying

So = lim
T!1

ST (2.17)

Moreover, let

bp (�) = lim
T!1

~�hp(T ) (�) , (2.18)

where ~�hp
(T )

(�) is de�ned by (2.6). As (2.18) is for any arbitrary h the

index is dropped from the LHS of the equation. Furthermore, let 
0 be
the information matrix based on the score function considered. In the
notation of Gouri�eroux, Monfort and Renault (1993), the following special
case corresponds to the problem on hand K0 = 0 and J0 = I0 = 
0.

Moreover, it should be emphasized that T
1
2

�
�̂
p

(T ) � �p (�0)
�
has 
0 as an
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asymptotic covariance matrix, where �p (�) is given by (2.16), �̂p(T ) by (2.3)

and �0 is the true value of the MA parameter. We �rst examine the ALS
estimator, namely

Proposition 3.1: The ALS estimator de�ned in (2.16) has, under suitable
regularity conditions, the following asymptotic distribution:

T
1
2

�
�̂Ap (ST ) � �0

�
d

!

T!1
N
�
0;�Ap (S0)

�
; where

�
A

p (S0) =

h
@�p (�)0

@�
S
�1

0

@�p (�)0

@�

i
�1

@�p (�)0

@�
S0
0S0

@�p (�)

@�

h
@�p (�)0

@�
S
�1

0

@�p (�)0

@�

i
�1

(2.19)

The proof and regularity conditions appear in Gouri�eroux et al. (1985).
From (2.19) we also note that the optimal choice of S0 is 


�1
0 . We examine

the estimator �̂SWi namely
Proposition 3.2: Under suitable regularity conditions,

T
1
2

�
�̂SWi (ST )� �0

�
d

!

T!1
N
�
0;�SWp (S0)

�
, where i = THP , NP , and

�SWp (S0) =

�
1 +

1

H

�h @bp (�)0
@�

S
�1
0

@bp (�)

@�

i
�1

@bp (�)0

@�
S0
0S0

@bp (�)

@�

h
@bp (�)0

@�
S
�1
0

@bp (�)0

@�

i
�1

(2.20)

The proof and regularity conditions for this result appear in Gouri�eroux
et al. (1993). We notice two di�erences between the asymptotic vari-
ances appearing in (2.19) and (2.20). First, we observe the scaling factor�
1 +H�1

�
because the simulation-based estimators have a source of ran-

domness produced by simulation. It is easy to show, however, that this
scaling e�ect is relatively minor for values of H say greater than 3 and be-
low 10. Second, we also notice that �p is replaced bp, since simulation-based
methods rely on a numerical mapping between the � vector and �. A �nal
proposition, stated without proof establishes the relationship between the
score-based and Wald SMM estimators.

Proposition 3.3: Under suitable regularity conditions �̂SSNp
�

�10

�
is

asymptotically equivalent to �̂SWNp
�

�10

�
. Further, if H is large, �̂SSTHp (ST )

has the same limiting distribution as �̂SSNp (ST ), using usual central limit
theorem arguments.

3. Finite-sample performance of estimators: Monte

Carlo evidence

The discussion in Section 2 yielded estimators which represent two key
modi�cations in comparison to the early Durbin method and the more re-
cently proposed procedure by Galbraith and Zinde-Walsh (1994), namely
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the SMM and ALS estimators for � both involve a set of overidenti�ed mo-
ment conditions and the SMM estimators rely on simulations of the MA
process unlike the previously proposed procedures. The six new estima-
tors �ij of �, with i = SW , SS and A; j = THp, Np (for SW and SS) and
j = p (for i = A) have known asymptotic distributions discussed in the pre-
vious section. According to those (�rst-order) asymptotic results we know
that the ALS estimators are more e�cient than the SMM estimator. Yet, in
small samples it was noted by Gouri�eroux et al. (1993) that the simulation-
based estimator appeared to outperform the asymptotically most e�cient
ML estimator. We now turn our attention to a Monte Carlo investigation
to further explore these small sample properties. All simulations were per-
formed with Gauss Version 3.0 using 1000 replications. All results appear
in Talbe 3.1.

We �rst consider a comparison of �̂G=SW and the estimator based on the

ALS principle, i.e. �̂Ap . Hence we study �rst the e�ect of using overidentify-
ing restrictions to estimate � from the p-dimensional AR parameter vector.
We considered cases of p = 8 and 12 with sample sizes equal to T = 50
and 200. These settings correspond to those examined by Galbraith and
Zinde-Walsh and were used for comparison. Table 3.1 reports the Bias as
well as the Root Mean Squared Error (RMSE). Four values of � were con-
sidered namely, � = :10; :50; :90; :99. We continued to use these values for
all other experiments as well (this means they di�er from the small Monte
Carlo investigation in Gouri�eroux et al. (1993) who consider T = 250, and
H = 1 and p = 3)5.

For low values of � we �nd results of the relative performance of the
�̂G=SW , �̂Ap and simulation based estimators as well as the ML estimator
that are in line with the asymptotic e�ciency rankings. As there is little
dependence this is not surprising particularly with T = 200. For � at
:5 this ranking is no longer upheld. For instance the ALS generalization
of G=ZW with the identity matrix outperforms the original one, but the
simulation-based estimators still lag behind.

As � approaches the noninvertibility region, like for instance � = :99,
we observe how the simulation based estimators outperform the more tra-
ditional estimators. For instance the RMSE of �̂G=SW is :1296 for T = 200

and p = 8 while for �̂SWNp it is :836 with a 50 % reduction in bias. The
score-based estimator does not seem to do as well, however as its RMSE is
:1479. Also the bias is greatly improved by using the SW type estimator.
Since the score-based simulation estimator performed relatively poorly we
considered improving it by increasing H fromH = 1 to H = 3. The results

5For the sake of space we only report results with p = 8, results with p = 12 are

available upon request.
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in Table 3.1 show however that this had little e�ect on the performance of
the estimator. To summarize, we can say that the simulation based estima-
tors appear to be quite attractive, as they are simple and exhibit desirable
small sample properties improving existing methods. Among the simula-
tion based estimators the one based on the Wald principle seems to be the
best.

4. Some extensions

We would like to conclude by suggesting some relatively straight forward
extensions of the estimators proposed in section 2. First and foremost, it
is relatively straightforward to extend the SMM estimators to higher order
MA models. This can be done without any major modi�cation. Second,
we can also consider multivariate MA models. Such extensions are a bit
more involved, but conceptually fairly straightforward.
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Table 3.1 Bias and RMSE of Galbraith and Zinde-Walsh, Simulated Method of Moments and
Asymptotic Least Squares Estimators

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

50 .10 .1664 .0029 .1940 .0080 .2375 .0068 .2455 -.0184 .2455 -.0085 .2451 -.0122

200 .10 .0730 -.0004 .0746 .0002 .0845 .0029 .1042 .0002 .1128 -.0039 .1128 -.0024

50 .50 .1666 -.0069 .1525 -.0040 .1656 -.0088 .2000 -.0714 .2379 -.0857 .2408 -.0865

200 .50 .0730 -.0024 .0677 .0002 .0732 .0000 .0874 -.0111 .1001 -.0270 .1041 -.0245

50 .90 .1778 -.0526 .7250 .0055 1.9179 .2092 .2056 -.0389 .2409 -.1814 .2377 -.1718

200 .90 .0854 -.0411 .0750 -.0644 .1266 -.0623 .0899 .0008 .1019 -.0702 .1012 -.0641

50 .99 .2073 -.1157 .3521 -.1160 1.8281 .0107 .1681 -.0442 .2906 -.2472 .2867 -.2379

200 .99 .1296 -.1048 .1384 -.1326 .1299 -.1228 .0836 -.0374 .1488 -.1296 .1481 -.1279

Notes:  denotes the estimator proposed by Galbraith and Zinde-Walsh (1994), is the ALS estimator as defined in (2.16),

 refer to the SMM estimators based on the score principle as defined in (2.14).  In the same vein, are a notation

for the SMM estimators based on the Wald principle as defined in (2.13) and (2.14).


