
Montréal
Avril 2001

Série Scientifique
Scientific Series

2001s-31

R&D and Patents: Which Way
Does the Causality Run?

Hans van Ophem, Erik Brouwer,
Alfred Kleinknecht, Pierre Mohnen



CIRANO

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le
financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-
membres, d’une subvention d’infrastructure du ministère de la Recherche, de la Science et de la Technologie, de
même que des subventions et mandats obtenus par ses équipes de recherche.

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and
research activities are funded through fees paid by member organizations, an infrastructure grant from the
Ministère de la Recherche, de la Science et de la Technologie, and grants and research mandates obtained by its
research teams.

Les organisations-partenaires / The Partner Organizations

•École des Hautes Études Commerciales
•École Polytechnique
•Université Concordia
•Université de Montréal
•Université du Québec à Montréal
•Université Laval
•Université McGill
•MEQ
•MRST
•Alcan inc.
•AXA Canada
•Banque du Canada
•Banque Laurentienne du Canada
•Banque Nationale du Canada
•Banque Royale du Canada
•Bell Québec
•Bombardier
•Bourse de Montréal
•Développement des ressources humaines Canada (DRHC)
•Fédération des caisses populaires Desjardins de Montréal et de l’Ouest-du-Québec
•Hydro-Québec
•Imasco
•Industrie Canada
•Pratt & Whitney Canada Inc.
•Raymond Chabot Grant Thornton
•Ville de Montréal

© 2001 Hans van Ophem, Erik Brouwer, Alfred Kleinknecht et Pierre Mohnen. Tous droits réservés. All rights
reserved.
Reproduction partielle permise avec citation du document source, incluant la notice ©.
Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source.

ISSN 1198-8177

Ce document est publié dans l’intention de rendre accessibles les résultats préliminaires
de la recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions.
Les idées et les opinions émises sont sous l’unique responsabilité des auteurs, et ne
représentent pas nécessairement les positions du CIRANO ou de ses partenaires.
This paper presents preliminary research carried out at CIRANO and aims at
encouraging discussion and comment. The observations and viewpoints expressed are the
sole responsibility of the authors. They do not necessarily represent positions of CIRANO
or its partners.



R&D and Patents: Which Way Does the Causality Run?*

Hans van Ophem†, Erik Brouwer‡, Alfred Kleinknecht§, Pierre Mohnen¶

Résumé / Abstract

A partir de données transversales de 460 entreprises néerlandaises ayant
répondu aux enquêtes innovation de 1988 et 1992, nous réexaminons le sens de la
causalité entre la R-D et les brevets. Les deux équations de comportement ont été
estimées simultanément en supposant une distribution bivariée conditionnelle
entre ces deux variables, dont l'une est discrète et l'autre continue. Nous avons
essayé différentes spécifications pour les données de comptage sur les brevets.
Nous trouvons que la causalité à la Granger va des brevets à la R-D dans toutes
les spécifications. Un brevet en plus augmente la R-D quatre ans plus tard de
7,5 %. La causalité dans l'autre sens disparaît dès que l'on s'écarte le moindrement
d'une distribution Poisson des données de brevets.

From cross-sectional data of 460 firms that responded to both the 1988
and the 1992 Dutch innovation surveys we have reexamined the causality
direction between R&D and patents, using data on contemporaneous and four-
year lagged patent applications and R&D expenditures. The two equations have
been estimated jointly assuming a bivariate conditional distribution between the
two variables, one being discrete and the other one continuous. We have
experimented with different specifications of the count data for patent
applications. We find that patents Granger-cause R&D in all specifications. One
additional patent increases R&D four years later by 7.5%. The reverse causality
from R&D to patents vanishes as soon as we depart in one way or another from
the simple Poisson specification of patent counts.
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1. Introduction.

Because of the lack of long time series on R&D and patents, few studies have
examined the causal link in the Granger sense between these two innovation indi-
cators. The existing evidence gathered by Griliches (1981), Pakes (1985), Hall et
al. (1986) and Griliches et al. (1991) points to an almost instantaneous relation-
ship, and, to the extent that any lag e�ects can be established, causality seems to
run from R&D to patents. The Dutch innovation surveys which contain questions
on patent applications allow us to re-examine this issue using information of four
year lagged amounts of R&D expenditures and numbers of patent applications for
a sample of 460 �rms of the 1992 survey that also responded to the 1988 survey.

Section 2 discusses the model which relates R&D expenditures and patent
count mutually. Section 3 introduces the data and the estimation results are
presented in section 4. Section 5 concludes.

2. Model.

As discussed in the introduction, we want to investigate the relation between R&D
expenditures and our measure of the rate of success of these expenditures, the
number of patents acquired. Clearly, stating that R&D in year t (R&Dt) depends
on the patent count of year t (yt) and that the patent count of year t depends on
R&Dt gives rise to a model with an internal inconsistency which is impossible to
be estimated. The problem is that yt cannot cause R&Dt and at the same time be
caused by R&Dt. Also from economic theory one would not expect such a relation.
Economic theory suggests that yt and R&Dt depend on past R&D expenditures
and past acquired patents respectively. In the panel data set used in this paper,
we have 2 waves available with a time lag of 4 years (1988-1992).We will denote
these past R&D expenditures by R&Dt�1 and the past patent counts by yt�1.
It is not very likely that using these past observations specify the determination
process of R&Dt and yt correctly. One would expect many past values having an
in�uence on this process (cf. Bound et al., 1884). However, as we do not have
better information, we have to rely on our expectation that R&Dt�1 and yt�1 are
good proxies. We do not expect that R&D expenditures �uctuate wildly across
time. Moreover, once a �rm has established a high quality research department
probably a relatively constant �ow of patents will be generated.1

1This argument would allow us to use R&Dt and yt as proxies for the past R&D expenditures
and the patent count. Still a statisitical inconsistency would be present in the model (cf.



Assume that the distribution of the patent count given yt�1 is given by:

Pr(yti = yijR&Dt�1i) = f(yi; R&Dt�1;�i) (1)

where �i is a vector of parameters of the distribution. One (or more) of the
elements of �i can be made a function of the characteristics of the �rm. If we
choose the Poisson distribution �i only consists of the expectation of the count.
If Xi represents a vector of characteristics of �rm i, the usual speci�cation for this
expectation is:

�i = exp(�0Xi + �R&Dt�1i) (2)

For the R&D expenditures we specify the following relation:2

R&Dti = 0Zti + �yt�1i + "ti (3)

where Zti is again a vector of explanatory variables of �rm i and "ti an error term.
Given the fact that both R&Dt�1i and yt�1i are proxies of the past, we cannot
expect that the distributions of yti and R&Dti are independent. The relevant
conditional loglikelihood looks something like:3

log(Ljyt�1i; R&Dt�1i) =
NX
i=1

log(Lijyt�1i; R&Dt�1i) (4)

=
NX
i=1

log(g(yti; R&Dti; �jyt�1i; R&Dt�1i))

where N is the number of observations and g(:; :; �j:) the conditional bivariate dis-
tribution of yti and R&Dti where the correlation between the variables is given by
�: Very few distribution functions combining a discrete and a continuous variable
are available. However, by following the method of Van Ophem (2000) g can be
speci�ed for any combination of a discrete count and a continuous distribution.

We start by specifying the marginal distributions of the random variables
under investigation. The conditional marginal distribution of the patent count is
given by (1) and the conditional marginal distribution of the R&D expenditures
is based on the assumption that the "ti has a conditional distribution h("tijyt�1i):

Maddala, 1983, p.118).
2In fact we use the log of R&Dti and the log of R&Dt�1i in the empirical analysis. For

notational conciseness we will delete log in the section.
3Here we have abstracted from conditioning on the explanatory variables.
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If we assume that the patent count takes a �nite number of outcomes (say a
maximum of Y ) and that �i takes on a particular value, we can always determine
numbers �0; �1; ::; �Y�1 such that:

Pr(yti = y;�ijR&Dt�1i) =

�yZ
�y�1

�(u)du y = 1; ::; Y � 1 (5a)

where �(:j:) is the density of the standard normal distribution function. For
observations y = 0 and y = Y we specify:

Pr(yti = 0;�ijR&Dt�1i) =

�0Z
�1

�(u)du (5b)

Pr(yti = Y ;�ijR&Dt�1i) =

+1Z
�K�1

�(u)du

(5a) and (5b), given some �i, de�ne �0; �1; ::; �Y�1 uniquely. The relation between
the probabilities P (yti = y;�ijR&Dt�1i) and the �y's can also be written as:

Pr(yti � �;�ijR&Dt�1i) =
�X

y=0

P (yti = y;�ijR&Dt�1i) = �(��) =

�kZ
�1

�(u)du (6)

where we de�ne �Y = +1: Consequently:

�� = ��1

0
@ �X
y=0

P (yti = y;�ijR&Dt�1i)

1
A (7)

This relation de�nes �y ( y = 0; ::; Y � 1) uniquely for any value of �; and clearly
�y is a function of �i: �y(�i): As a result we have related an arbitrary discrete
distribution to the normal distribution. For count data the random variable yti
is unbounded. However, this does not cause any problems in the estimation of
the model. The loglikelihood function only contains the probability of actual, and
therefore bounded, observations.

The density of R&Dti can also be written in terms of the normal distribution
whatever the distribution h(:) (Lee, 1983):

R&D�

ti = ��1(H(R&Dtijyt�1i)) (8)
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where ��1(:) is the inverse of the standard cumulative normal distribution func-
tion and H(R&Dti) =

R R&Dti
�1

h(�)d�: R&D�

ti has a standard normal distribution.
Following Lee (1983), if "j follows the distribution Fj("j); uj = ��1(Fj("j)) has a
standard normal distribution.

A cumulative bivariate distribution having marginal distributions F1("1) and
F1("1) and a correlation �" between "1 and "2 is given by:

H("1; "2; �") = B(u1; u2; �u) = B(��1(F1("1));�
�1(F2("2)); �u) (9)

where B(:; :; �u) is the cumulative bivariate normal distribution with zero means,
unit variances and correlation �u:

4 In our case we have a combination of a discrete
and an actually observed continuous random variable, and therefore we need the
�rst derivative of (9) with respect to the continuous variables (say, "2):

@

@"2
H("1; "2; �") =

f2("2)

�(F2("2))

@B(u1; u2; �u)

@u2
(10)

The likelihood function of the observed pair (yti; R&Dti) equals:

Li = g(yti = y; R&Dti = rjR&Dt�1i; yt�1i) (2.1)

= g(yti � y; R&Dti = rjR&Dt�1i; yt�1i)� g(yti � y � 1; R&Dti = rjR&Dt�1i; yt�1i)

Using (10) we have:

g(yti � y; R&Di = rjR&Dt�1i; yt�1i) =
h(r)

�(H(r))

@B
�
��1

�
yP

k=0

P (yti = k)
�
;��1(H(r)); �u

�

@��1(H(r))
(12)

This simpli�es to (Maddala, 1983, p. 273):

g(yti � y; R&Di = rjR&Dt�1i; yt�1i) = h(r)�

0
BBB@
��1

�
yP

k=0

P (yti = k)
�
� �u�

�1(H(r))
q
1� �2u

1
CCCA

(13)
which can be substituted into (11) and then (4).

4Although �" and �u are closely related, they are not the same. Numerical analysis shows
that the signs and the order of magnitude are always the same (cf. Van Ophem, 1999).
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3. Data.

We use data from the Dutch part of the Community Innovation Survey (CIS)
which is available for the years 1988 and 1992. The population of interest in this
survey are the �rms with ten or more employees in all manufacturing and service
sectors of the Dutch economy. The original sample size consists of about 4000
�rms for both years. We restrict this sample to the �rms conducting permanent
R&D activities and of course, for which we have information for both years. The
resulting sample contains 460 observations. Additional information about the CIS
can be found in Brouwer (1997). The endogenous variables of the analysis are the
patent count and the natural logarithm of R&D expenditures. The patent count
relates to the patents submitted to the European Patent O�ce in München. We
must content with using R&D expenditures since we have no information of past
R&D to construct an R&D stock. Summary statistics are listed in Table 1. A
salient detail is the large di�erence between the mean and variance of the patent
counts. At �rst sight it is thus questionable to assume a Poisson distribution
for the count, where the mean and the variance are the same. The patent count
ranges from 0 to a maximum of 22, but the mean is below 1 patent per �rm.
There is thus a high frequency of zero counts.

-Insert Table 1-

The explanatory variables used in the estimations all relate to 1988. They are:

� �rm size: the logarithm of the number of employees in the �rm.

Firm size is expected to have a positive e�ect on R&D. What is less clearcut
is whether R&D increases more or less proportionately with �rm size. There
might be scale advantages, but there might also be a threshold e�ect (see
Bound et al. (1984) for empirical evidence). Since the size e�ect is not our
primary concern, we only introduce a linear term. The impact of size on
patent count is also debatable. On the one hand, large �rms might exploit
their �rst-mover advantage rather than patenting to secure the appropria-
tion of R&D bene�ts, but, on the other hand, large �rms are better equipped
to apply for patents and face future litigation battles.

� R&D collaboration: a dummy variable equal to 1 if the �rm is engaged in
an R&D collaboration with other �rms.
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R&D collaboration will probably have a positive impact on both the patent
count and R&D. Collaborating �rms will have a higher propensity to seek
patent protection since they have to reveal information to their partners.
We expect the e�ect of R&D collaboration on R&D to be positive. R&D
collaboration allows �rms to internalize their mutual R&D spillover and
thereby to increase the returns to their R&D e�orts (see d'Aspremont and
Jacquemin (1988) for a theoretical discussion of this result).

� sectoral dummy variables equal to 1 if the �rm's principal activity is in that
sector and zero otherwise.

The sectors are service, food and beverages, wood processing, chemicals,
plastics and rubber, metals, machinery, electrical equipment, and trans-
portation equipment. The reference group is all other sectors.

� average product life cycle in a sector in years.

The average product life cycle should show up with a negative coe�cient in
both the patent count and R&D since a shorter life-cycle of products will
increase the e�orts of �rms to renew their products more frequently.

4. Empirical results.

Tables 2 and 3 give the estimation results of the model described in section 2 under
the assumptions of a Poisson distributed patent count (1) and a normal distri-
bution for the error term of the log(R&Dt) equation (3). Table 2 contains the
estimates for the case that patent count and log(R&Dt) are not correlated. This
case can be estimated by a Poisson regression and ordinary least squares. R&D
increases with size, patents not, whereas cooperative R&D increases the number
of patents but not the amount of R&D. R&D and patents are not related to the
average product life cycle but are cross-correlated over time. Table 3 contains the
full maximum likelihood estimation for the speci�cation that allows a non zero
correlation between the error terms of the R&D and patent equations. Size now
exerts a positive e�ect on both patent applications and R&D expenditures. The
estimated marginal e�ect of size on the number of patent applications increases.
The average product life cycle shows a negative coe�cient on the amount of R&D.
The correlation coe�cient between the two error terms is, however, insigni�cantly
di�erent from zero. Causality between patents and R&D still seems to run both
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ways. The causality running from R&D to patents weakens when a contempora-
neous correlation between both is introduced through the error term.

-Insert Tables 2 and 3-

If we look at the distribution of the count (cf. Table 7, second column), we
observe a very large proportion of zero counts. The question is whether this is
not a little out of line with the Poisson distribution estimated. To check this we
have estimated a Without Zero Poisson model as proposed by Mullahy (1986).
Broadly speaking, only the positive counts follow a Poisson distribution in this
model and the probability of the zero count is estimated by a constant. The
following distribution is estimated:

Pr(yti = 0) =  + (1�  )�(0) (4.1)

Pr(yti = y) = (1�  )�(y) for y > 0

where �(y) is the chosen basic distribution function of the count. As we can see
from table 4, treating the frequent occurence of zero patents di�erently from the
other patent counts increases the contemporaneous correlation between R&D and
patents but reduces their cross intertemporal e�ects. The coe�cient of R&D on
patents becomes insigni�cant. The estimates of the R&D equations are robust to
this change of speci�cation. The additional parameter  is signi�cant.

-insert Table 4-

To investigate whether the assumption of a Poisson distributed count is too
restrictive, we now turn to the Katz family of distributions (Katz, 1965 or Winkel-
mann, 1997, p.35). This type of distribution nests several other distributions for
non-negative integers, while maintaining a parsimonious parameterization. It is
de�ned by the recursive probabilities:

Pr(yti = yjR&Di)

Pr(yti = y � 1jR&Di)
=
! + �(y � 1)

y
y = 1; 2; ::::;! > 0 and y � !=� for � < 0

(15)
The Poisson (! = �; � = 0), Negative Binomial, Geometric and Binomial dis-
tributions are special cases (Winkelmann, 1997, p. 36). To make the Poisson
speci�cation of section 3 a special case we assume that ! is individual speci�c
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(! = exp(X 0

i�)) and that � is not. Because the implicit probabilities have to sum
up to 1, the probability of a zero count can be simply derived:

Pr(yti = 0jR&Di) = 1�
1X
k=1

Pr(yti = kjR&Di) (16)

= 1�
1X
k=1

kY
j=1

! + �(j � 1)

j
Pr(yti = 0jR&Di)

=

0
@1 +

1X
k=1

kY
j=1

! + �(j � 1)

j

1
A
�1

From this probability all other probabilities can be derived and the application
of the method proposed in section 3 is straightforward. The estimation results
can be found in Table 5 and Table 6 (respectively the with and without zero
patent count speci�cations). The new parameter � is signi�cantly di�erent from
zero, proving formally our suspicion that the Poisson distribution is too restric-
tive. If we compare tables 3 and 5, we notice that the estimated correlation
between the error terms increases. In the patent equation size and lagged R&D
become insigni�cant. The estimates of the R&D equation remain pretty much
the same. Combining the Katz distribution and the without zero patent speci-
�cation increases the contemporaneous correlation coe�cient of the error terms,
reinforces the size elasticity in the patent equation, but does not resurrect any
causality running from R&D to patents. The absence of Granger-causality from
R&D to patents is broadly consistent with the predominantly contemporaneous
R&D e�ect and the non-signi�cance of lagged R&D e�ects on patents found in
most other studies (see Cincera, 1997). Again, the R&D estimates remain largely
una�ected.

-insert Tables 5 and 6-

To investigate the �t we employ the method discussed in Winkelmann (1997, p.
162). We predict the patent count distribution of the �rms and after aggregating
across all �rms, we obtain a sampling distribution under the speci�ed model. A
Pearson �2-test is performed to check whether the sampling distribution �ts the
data. In doing this we need to limit the count and we opted for a maximum
count of 8 (only 2 �rms where granted more than 8 patents). The results of these
calculations are listed in Table 7.
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-insert Table 7-

From this table we can conclude that the best performing model is the one
based on the Katz-system of distributions and a without zero patent count speci�-
cation. Based on these estimates, we can assert that one additional patent applied
for (assuming that on average an application gets granted) yields four years down
the road a 7.5% increase in R&D expenditures. The interpretation could be that
patents pave the way to a stream of development expenditures in order to bring
the patented product to the market or to additional R&D aiming to develop com-
plements to the patented product. The elasticity of patents with respect to R&D
(from the contemporaneous correlation of the error terms) is on the order of 0.4,
which is closer to the time-series estimates reported in the literature (see Griliches,
1990) than to the cross-section estimates that they are supposed to be comparable
with.

5. Conclusion

From cross-sectional data on contemporaneous and four-year lagged patent ap-
plications and R&D expenditures we have reexamined the causality direction be-
tween R&D and patents. The two equations have been estimated jointly with a
contemporaneous correlation working through the error terms. We have experi-
mented with di�erent speci�cations of the count data for patent applications: the
Poisson distribution, the negative binomial distribution and the Poisson and neg-
ative binomial without zero patent speci�cations. The negative binomial without
zero patent speci�cation model performs best (as was also found by Licht and Zoz
(1998) and Crépon and Duguet (1997)).

We �nd that patents Granger-cause R&D in all speci�cations. One additional
patent increases R&D four years later by 7.5%. The reverse causality from R&D
to patents vanishes as soon as we depart in one way or another from the simple
Poisson speci�cation of patent counts. Although our result should be con�rmed
by analyzing other datasets and by checking how sensitive our estimates are to
other speci�cations (such as including non-linear size e�ects, modeling more ex-
plicitly the contemporaneous linkage between R&D and patents, and introducing
innovative sales in the picture) we might have uncovered a di�erent causality from
the conventional one estimated by other authors.
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Table 1: Sample characteristics of the variables.
variable mean st. dev. minimum maximum
patent count 1992 0.457 1.662 0 22
log(R&D) 1992 1.270 1.603 -2.794 8.939
�rm size (log of employees) 4.998 1.214 1.386 11.082
R&D collaboration 0.452 0.498 0 1
service 0.211 0.408 0 1
food & beverages 0.091 0.288 0 1
wood processing 0.072 0.258 0 1
chemicals 0.080 0.272 0 1
plastics & rubber 0.035 0.183 0 1
metals 0.126 0.332 0 1
machinery 0.174 0.379 0 1
electric equipment 0.050 0.218 0 1
transportation equipment 0.065 0.247 0 1
average product life cycle 10.638 1.945 4.526 14.821
patent count 1988 0.663 2.200 0 33
log(R&D) 1988 1.315 1.530 -3.219 9.616
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Table 2: ML-estimation of a Poisson distributed patent equation
and OLS estimation of log (R&D) in 1992

variables patent-count log(R&D)
constant -3.087 (0.886)�� -2.248 (0.452)��

�rm size (log of employees) 0.165 (0.089) 0.679 (0.049)��

R&D collaboration 0.369 (0.160)� 0.194 (0.117)
service 0.320 (0.513) 0.289 (0.221)
food & beverages -0.124 (0.652) 0.251 (0.267)
wood processing 0.942 (0.579) 0.066 (0.284)
chemicals 2.085 (0.520)�� 1.648 (0.282)��

plastics & rubber 2.078 (0.550)�� 0.221 (0.361)
metals 1.336 (0.528)�� 0.234 (0.251)
machinery 1.901 (0.483)�� 0.663 (0.232)��

electric equipment 0.049 (0.586) 1.421 (0.317)��

transportation equipment 0.543 (0.577) 0.773 (0.294)��

average product life cycle -0.055 (0.073) -0.049 (0.035)
log(R&D1988) 0.301 (0.067)��

patent count 1988 0.101 (0.027)��

Mean log-likelihood (count part) = -0.877; number of observations
= 460. R2 (R&D-part) = 0.445, variance R&D-error = 1.468
Asymptotic standard errors in parentheses.� = signi�cant at 5%;
�� = signi�cant at 1% (two-sided test).
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Table 3: ML-estimation patents/R&D-model for 1992: Poisson
speci�cation of the count.

variables patent-count log(R&D)
constant -3.001 (0.936)�� -2.883 (0.561)��

�rm size (log of employees) 0.157 (0.095)� 0.822 (0.062)��

R&D collaboration 0.317 (0.164)� 0.207 (0.143)
service 0.304 (0.519) 0.354 (0.275)
food & beverages -0.250 (0.649) 0.423 (0.330)
wood processing 0.918 (0.580)� 0.101 (0.355)
chemicals 1.721 (0.523)�� 2.068 (0.344)��

plastics & rubber 1.942 (0.543)�� 0.493 (0.440)
metals 1.189 (0.525)� 0.422 (0.312)
machinery 1.679 (0.486)�� 0.959 (0.287)��

electric equipment 0.386 (0.587) 1.620 (0.383)��

transportation equipment 0.609 (0.574) 0.977 (0.360)��

average product life cycle -0.017 (0.072) -0.092 (0.043)�

log(R&D1988) 0.189 (0.075)�

patent count 1988 0.095 (0.032)��

model parameters
correlation 0.082 (0.062)
variance error term log(R&D) 2.042 (0.159)��

Mean log-likelihood = -2.385; number of observations = 460.
Standard errors in parentheses.� = asymptotically signi�cant at 10%;
�� = signi�cant at 1% (two-sided test)
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Table 4: ML-estimation patents /R&D-model for 1992:
Without zero speci�cation speci�cation for the count.

variables patent-count log(R&D)
constant -2.689 (1.352)� -2.841 (0.559)��

�rm size (log of employees) 0.422 (0.121)�� 0.824 (0.061)��

R&D collaboration 0.462 (0.186)� 0.240 (0.141)�

service 0.603 (0.628) 0.394 (0.275)
food & beverages -0.146 (0.788) 0.440 (0.330)
wood processing 1.196 (0.792) 0.106 (0.354)
chemicals 1.727 (0.693)� 2.023 (0.341)��

plastics & rubber 1.320 (0.695)� 0.394 (0.435)
metals 1.225 (0.670)� 0.434 (0.311)
machinery 1.833 (0.603)�� 0.939 (0.285)��

electric equipment 0.695 (0.644) 1.562 (0.379)��

transportation equipment 0.971 (0.732) 0.984 (0.358)��

average product life cycle -0.071 (0.126) -0.098 (0.043)�

log(R&D1988) 0.053 (0.095)
patent count 1988 0.078 (0.032)�

model parameters
correlation 0.322 (0.095)��

variance error term log(R&D) 2.047 (0.159)��

 0.692 (0.039)��

Mean log-likelihood = -2.213; number of observations = 460.
Standard errors in parentheses.� = asymptotically signi�cant at 10%;
�� = signi�cant at 1% (two-sided test)
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Table 5: ML-estimation patents/R&D-model for 1992:
Katz-system speci�cation of the count.

variables patent-count log(R&D)
constant -4.430 (1.329)�� -2.891 (0.562)��

�rm size (log of employees) 0.193 (0.151) 0.817 (0.061)��

R&D collaboration 0.085 (0.240) 0.203 (0.143)
service -0.213 (0.721) 0.350 (0.275)
food & beverages -0.189 (0.816) 0.429 (0.330)
wood processing 1.036 (0.718) 0.119 (0.356)
chemicals 1.602 (0.678)� 2.067 (0.344)��

plastics & rubber 1.643 (0.731)�� 0.497 (0.440)
metals 0.924 (0.674)�� 0.422 (0.313)
machinery 1.465 (0.620)� 0.958 (0.287)��

electric equipment 1.062 (0.751) 1.639 (0.383)��

transportation equipment 0.759 (0.725) 0.987 (0.361)��

average product life cycle 0.027 (0.099) -0.089 (0.043)�

log(R&D1988) 0.055 (0.126)
patent count 1988 0.082 (0.032)�

model parameters
correlation 0.319 (0.118)��

variance error term log(R&D) 2.050 (0.159)��

� 0.712 (0.052)��

Mean log-likelihood = -2.229; number of observations = 460.
Standard errors in parentheses.� = asymptotically signi�cant at 10%;
�� = signi�cant at 1% (two-sided test)
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Table 6: ML-estimation patents/R&D-model for 1992: Without zero
Katz-system speci�cation of the count.

variables patent-count log(R&D)
constant -4.314 (1.409)�� -2.961 (0.563)��

�rm size (log of employees) 0.500 (0.151)�� 0.838 (0.061)��

R&D collaboration 0.452 (0.233)� 0.255 (0.142)��

service -0.129 (0.738) 0.345 (0.276)
food & beverages -0.328 (0.854) 0.414 (0.332)
wood processing 1.207 (0.811) 0.117 (0.358)
chemicals 1.838 (0.703)�� 2.046 (0.342)��

plastics & rubber 1.204 (0.748) 0.374 (0.437)
metals 1.231 (0.697)� 0.444 (0.313)
machinery 1.982 (0.641)�� 0.980 (0.287)��

electric equipment 1.071 (0.736) 1.602 (0.380)��

transportation equipment 1.111 (0.764) 1.009 (0.360)��

average product life cycle -0.030 (0.108) -0.094 (0.043)�

log(R&D1988) 0.057 (0.115)
patent count 1988 0.075 (0.032)�

model parameters
correlation 0.390 (0.102)��

variance error term log(R&D) 2.059 (0.161)��

� 0.402 (0.103)��

 0.589 (0.061)��

Mean log-likelihood = -2.202; number of observations = 460.
Standard errors in parentheses.� = asymptotically signi�cant at 10%;
�� = signi�cant at 1% (two-sided test)
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Table 7: Predicted patent-count .
Poisson Poisson Poisson Katz Katz

count (Y) sample � = 0 WZ WZ
0 381 360 317 375 374 379
1 36 75 101 41 42 37
2 21 16 28 21 19 18
3 6 4 8 10 10 10
4 3 2 3 5 6 5
5 5 1 1 3 3 3
6 5 1 1 1 2 2
7 0 0 0 1 1 1
8 1 0 0 1 1 1

�9 2 0 0 3 2 4

Pearson-�2 - 66.5� 114.0� 15.9 10.0 10.6
� = Ho: predicted count �ts sample count rejected at 1%.
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