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Which Volatility Model for Option Valuation?
Peter Christoffersen” and Kris Jacobs’

Résumé/ Abstract

Caractériser les dynamiques des rendements d’ actifs a I’aide de modeles de
volatilité est un champ important de la finance empirique. La littérature dans ce
domaine privilégie des spécifications de volatilité plutét complexes dont la
performance relative est généralement estimeée par leur vraisemblance a partir de séries
chronologiques de rendements d actifs. Cet article compare plusieurs modéles de
volatilité selon un critére différent, utilisant les rendements et prix d’ options dans une
mesure neutre au risque et de probabilité physique. Nous estimons la performance
relative des différents modeles en évaluant la fonction objective basée sur les prix
d’ options. Contrairement a I’inférence basée sur les rendements, nous trouvons que
notre fonction objective basée sur les options favorise un modéle relativement
parcimonieux. En particulier, lorsqu’' elle est évaluée hors-échantillon, notre analyse
favorise un modéle qui, outre le groupement de volatilités, ne permet qu'un effet de
levier standard. Cette analyse empirique fait partie d’ une littérature en plein essor qui
suggere que I’ évaluation des prix d’ options en temps discret, lorsque la volatilité varie
dansle temps, est pratique et riche en enseignements.

Characterizing asset return dynamics using volatility models is an important
part of empirical finance. The existing literature favors some rather complex volatility
specifications whose relative performance is usually assessed through their likelihood
based on a time-series of asset returns. This paper compares a range of volatility
models along a different dimension, using option prices and returns under the risk-
neutral as well as the physical probability measure. We judge the relative
performance of various models by evaluating an objective function based on option
prices. In contrast with returns-based inference, we find that our option-based
objective function favors a relatively parsimonious model. Specifically, when
evaluated out-of-sample, our analysis favors a model that besides volatility clustering
only allows for a standard leverage effect. Thisempirical analysisis part of a growing
literature suggesting that discrete-time option pricing with time-varying volatility is
practical and insightful.
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1 Introduction

The poor empirical performance of the classic Black-Scholes (1973) option-valuation model
is well documented. One of the main reasons for this poor empirical performance is the
assumption of constant volatility. The problematic nature of this assumption is evidenced by
the well-known smile and smirk patterns of implied volatilities, which indicate that market
prices can only be reconciled with volatilities that vary across maturities and exercise prices.
While it is entirely possible that these patterns could disappear by modifying some other
building blocks of the model, it is not surprising that researchers have attempted to modify
the constant volatility assumption. For instance, Dupire (1994) and Derman and Kani (1994)
have proposed deterministic volatility models whose performance in turn has been questioned
by Dumas, Fleming and Whaley (1998). Dumas et al. found that option prices from a simple
OLS regression of implied volatility on a polynomial in strike price and maturity (the so-called
Practitioner’s Black-Scholes) outperformed models whose diffusion term is a deterministic
function of the strike price and maturity.

A more structural approach to improving the empirical performance is to model volatility
as stochastically time-varying and to explicitly derive option prices under that maintained
assumption. Interestingly, this literature has developed along two related but somewhat
different avenues. The early literature on option valuation with time-varying volatility is
largely specified in continuous time (Hull and White (1987), Johnson and Shanno (1987),
Melino and Turnbull (1990), Scott (1987), and Wiggins (1987)). The use of continuous time
models has certain advantages. Importantly, for certain continuous-time option valuation
models with time-varying volatility, it is possible to find analytical solutions for option prices
(see Heston (1993)). The disadvantage of continuous-time models is that estimating the
model parameters is not necessarily straightforward as volatility is modelled as an unobserved
factor, and as real-world data is of course recorded at discrete intervals. Nevertheless,
econometricians have made great strides in this domain, and the literature on the estimation
of continuous-time option valuation models has exploded in recent years.!

An alternative and intuitive approach is to directly specify models of time-varying volatil-
ity at a discrete frequency matching that of the observed data. Following the work of Engle
(1982) and Bollerslev (1986), a voluminous econometric literature has developed on volatil-
ity estimation and forecasting using discrete time GARCH processes (see the overview in
Bollerslev, Chou and Kroner (1992)).2 Duan (1995) characterizes the transition between the

For overviews on econometric techniques to estimate continuous time models, see Campbell, Lo and
MacKinlay (1997), Ghysels, Harvey and Renault (1996), Melino (1994), Renault (1997) and Tauchen (1997).
For empirical applications of these to options prices see Andersen, Benzoni, and Lund (1999), Bakshi, Cao
and Chen (1997), Benzoni (1998), Chernov and Ghysels (2000) , Bates (1996a), Eraker (2000), Jiang (1998),
Jones (2000) and Pan (2000).

2Some important papers that estimate GARCH models for asset returns dynamics are Bollerslev, Engle
and Wooldridge (1988), French, Schwert and Stambaugh (1987), Glosten, Jagannathan and Runkle (1993),



physical and risk-neutral probability distributions if the dynamic of the primitive security is
given by a GARCH process, and thus establishes the foundation for the valuation of Euro-
pean options. Garcia and Renault (1998) discuss hedging in GARCH models. Ritchken and
Trevor (1999) in turn construct trinomial trees to price American options under GARCH.
Several papers have investigated aspects of the empirical performance of these models. Amin
and Ng (1993) estimate GARCH parameters under the physical distribution and investigate
the option valuation implications for individual stocks. Engle and Mustafa (1992) back out
implied volatility paths from option prices and estimate GARCH model parameters to match
these paths, and Duan (1996) estimates GARCH parameters under the risk neutral distribu-
tion using a single cross-section of option prices and investigates the potential of this model
to explain the smile. In a recent paper, Heston and Nandi (2000) formulate a particular
GARCH specification that yields an analytical solution and provide an empirical analysis of
the model. They convincingly demonstrate that the inclusion of a leverage effect as well as
volatility clustering are of great importance in improving valuation performance.?

While these papers make important contributions, it is clear that many issues remain
unexplored. Most glaringly, the literature that estimates GARCH processes using time
series on asset returns contains a wealth of evidence on specifications that generalize the
fairly simple GARCH processes that are used in the option valuation literature. It seems
natural that the large amount of work researchers have put into modeling the volatility of
foreign exchange, bond, equity and index returns, should also be relevant for fitting the
prices of options written on these underlying assets. Curiously however, no paper so far has
assessed the relative performance of different GARCH models in valuing options across strike
prices and times-to-maturity. This paper intends to fill this gap. We apply the GARCH
specifications of Ding, Granger and Engle (1993) and Hentschel (1995). These specifications
summarize the differences between different GARCH models in terms of differences in the
news impact function (Pagan and Schwert (1990) and Engle and Ng (1993)). Through
judicious choice of the specification of the news impact function, these models manage to
nest a number of existing GARCH specifications. Adopting these specifications therefore
allows us to investigate the pricing performance of a number of existing models while keeping
the empirical analysis manageable.

We evaluate the valuation performance of the GARCH specifications both in- and out-
of-sample, and we estimate model parameters under the physical as well as the risk-neutral
probability distributions. In doing this, we attempt to demonstrate that option valuation in
this framework is feasible. Unfortunately, except for in a limited class of processes (Heston
and Nandi (2000)), analytical solutions are not available and we have to resort to numerical
solutions. However, advances in computational power have rendered numerical techniques

Pagan and Schwert (1990) and Schwert, (1989).

3Several studies have also studied the relationship between volatility implied in option prices and the
conditional volatility in GARCH models estimated from returns. See Day and Lewis (1992), Jorion (1995)
and Lamoureux and Lastrapes (1993).



much more feasible, and furthermore, a defining benefit of these discrete time models is that
one-period ahead conditional volatility is deterministic. This constitutes a great advantage
over continuous time models where volatility has to be extracted after the parameters of a
given model have been estimated.

Our results are surprising. While most of the GARCH literature that investigates returns
data using maximum likelihood favors relatively complex models, we find that for the purpose
of option valuation, one should not look beyond a simple GARCH model that allows for
volatility clustering and a leverage effect. While the less parsimonious models we investigate
achieve a better fit when estimating using returns data and when evaluating option prices
in-sample, they perform worse than the parsimonious model out-of-sample. Moreover, the
improvement in in-sample fit is small in some cases, even though the extra parameters are
usually significantly estimated.

Given that the specifications we investigate nest a number of GARCH models, our results
have potentially serious implications. Because much of the literature on complex GARCH
models does not consider economically motivated objective functions, its value could be put
into question if other objective functions yield similar results. Moreover, there are equally
serious consequences for the continuous-time stochastic volatility literature. ~ While the
empirical research on discrete and continuous-time models has developed independently, we
know that most continuous-time models can be formulated as the limit cases of discrete-
time models (Nelson and Foster (1994), Duan (1997), Heston and Nandi (2000)). The
implication of our results for the continuous time stochastic volatility literature is therefore
that there may be little to gain from moving beyond the simple volatility specification in
Heston (1993), which allows for volatility clustering and a leverage effect, and which offers
the distinct advantage of an analytical solution.*

The remainder of the paper is organized as follows. In Section 2 we discuss the estimation
methodology under the physical as well as the risk-neutral measure. Section 3 introduces
the data set, Section 4 discusses the empirical results, and Section 5 concludes and points
out directions for future work.

2 Methodology

In this section we discuss the different methodologies used to estimate parameters for the
option valuation models. We first outline the methodology used to estimate the parameters of
the volatility process under the physical probability measure. This methodology exclusively

“Even if there may be little to gain from changing the volatility dynamic in continuous-time stochastic
volatility models, it may prove worthwhile to change other building blocks of these models, such as the
specification of the jumps in prices and volatility (see Andersen, Benzoni and Lund (1999), Bakshi, Cao and
Chen (1997), Bates (1996a, 2000), Duffie, Pan and Singleton (2000), Eraker (2000), Jiang (1998) and Pan
(2000)).



uses the returns on the underlying asset. Subsequently we discuss the estimation of the
parameters of the volatility process under the risk neutral probability measure. We estimate
the risk neutral measure by combining data on returns with data on option prices. To clarify
the relationship between the physical and risk neutral probability measures, we indicate the
relationship between the parameters obtained under the physical and risk-neutral volatility
dynamics.

2.1 Estimating the Volatility Process Under The Physical Proba-
bility Measure Using Asset Returns

We investigate the standard class of GARCH models pioneered by Engle (1982) and Boller-
slev (1986). GARCH models are discrete-time models that have been used to estimate a va-
riety of financial time series such as stock returns, interest rates and foreign exchange rates.
See Bollerslev, Engle and Nelson (1994) for an overview of GARCH models and Bollerslev,
Chou and Kroner (1992) and Campbell, Lo and MacKinlay (1997) for an overview of the use
of GARCH models for financial time series. We assume that the logarithm of stock returns
under the physical probability measure P follows the dynamic

1
In(S:/S: 1) = Re = 1 + M\y/hy — Shi+ iz, 2~ N(0,1), (1)

where 7 is the risk-free rate, and A is the price of risk. Notice that it follows that the
conditional expectation of gross returns is

EPlexp(Ry)| 1] = exp(r + Ay/h). 2)

The specification of returns in (1) is common to all GARCH models we investigate. The
differences between the models concern the specification of the volatility dynamic h;. Ding,
Granger and Engle (1993) and Hentschel (1995) provide very general specifications of the
volatility dynamic that nest most existing work. Motivated by these studies, we first write
the volatility dynamic h, as follows®

he = Bo + Brhe—1 + Pohe1f(2-1) (3)

where z; ~ N(0,1). Different GARCH models are mainly characterized by differences in the
innovation functions f. We consider the following specifications of f

Simple [z 1) =22,
Leverage :  f(z1) = (21— 0)°

5The vast majority of papers in the literature find little or no support for higher-order GARCH models,
thus we restrict attention to first order models here.



News fze1) ={lze1 — 0| — Kk (21 — 9)}2
Power : flze1) = (21 — )™
News&Power Jz1) ={lze1 — 0] — £ (21 — 9)}27

We then generalize to allow for nonlinear volatility dynamics as follows
Box — Cox : hf = o + ﬂlh:&p—l + ﬂQh;pflf(ztfl)u with f(z1) = (21 — 9)% (4)

Notice that the News& Power model nests the preceding models, while the News, Power
and Box — Cox models nest the Leverage and Simple models. To appreciate the impor-
tance of the innovation function, Figure I plots four of these innovation functions for certain
(arbitrarily chosen) parameter combinations. All panels plot the innovation function f(z; 1)
as a function of the i.i.d. “shock” z; 1. In every panel the broken line depicts the symmetric
innovation function associated with the Simple model, and the solid line depicts the innova-
tion function for the alternative model, which has extra parameters. It can be seen that the
Leverage parameter 0 “shifts” the innovation function, the News parameter k “tilts” the
innovation function, and the Power parameters, v and 1 flatten or steepen the innovation
function. Similar effects are described in Pagan and Schwert (1990), Engle and Ng (1993),
Ding, Granger and Engle (1993) and Hentschel (1995).

The persistence of the models under consideration can be written as

Persistence = By + o B {f(21-1)} (5)

where F{f(z; 1)} can be calculated analytically for the Simple model to be 1, for the
Leverage model to be 1 + 02, and for the News model to be

(1+02) (14 %) + 26[26 (0) + (14 6%) (22 (0) — 1))

where ¢ (0) and ® (0) denote the probability density function and the cumulative distribution
function for the standard normal. For the three other models, Power, News& Power and
Box — Cox, the persistence measure can be computed easily using simulation. Notice that in
the Box — C'ox model, persistence is with respect to the power of volatility, hf rather than
of volatility itself. It is the case for all models that restricting the persistence to be below
unity guarantees covariance stationarity of the model.

One way to price options under GARCH dynamics for returns is to proceed in two steps.
In a first step, one estimates the parameters of (1) and (3) under the physical probability
measure using asset returns. In a second step, one maps these parameters into the parameters
for the risk-neutral distribution. For GARCH models, this approach is followed for instance
by Amin and Ng (1993), Bollerslev and Mikkelsen (1996), and Hardle and Hafner (2000).
This second step is described in more detail in the next subsection. To implement the first
step, a convenient approach is to estimate the model parameters using maximum likelihood.

6



Denoting the vector of volatility parameters by ¢, we maximize the following log likelihood
function (conditioning on the first observation)

T

in L= (1) In(2r)/2- 3 In (h5) /23 (e = = Ald) + )/ 205) (6

t=2

2.2 Transforming the Physical Return Dynamic to a Risk Neutral
Dynamic

To use the parameters obtained under the physical probability measure for option valuation,
we have to be explicit about the relationship between the physical and risk neutral dynamic.
This relationship amounts to a choice of pricing kernel or equivalently a choice of the utility
function of the representative agent. In a GARCH context, Duan (1995), building on the
work of Rubinstein (1976) and Brennan (1979), provides a locally risk-neutral valuation
relationship (LRNV R) which is satisfied by a measure @ if

BRlexp(Ry)| Q1] = exp(r), (7)

and

VCLT’Q[Rt’Qtfl] = Va/f'P [Rt’Qtfl] = ht' (8)

The LENV R implies that under the risk neutral measure (), the return process evolves
according to

1
Rt:T_§ht+\/h7tZ:7 Z:NN(071> (9)

The volatility process (3) becomes under the risk-neutral measure®

he (8,0) = Bo + Bihy 1+ Pahy 1] (21— A, 6) (10)

To provide some more insight into this result, notice that solving for 2 ; from the risk
neutral dynamic (9) yields

1
2= <Rt1 -7+ §ht1> /A Pt (11)

whereas solving for z; 1 from the physical dynamic (1) we get

1 1
-1 = <Rt1 —r =M hi 1+ §ht1> /\/htfl = [(Rtl —r+ §ht1> /\/htl} - A (12)

8This specification only covers the Simple, Leverage, News, Power and News&Power models. The
transformation for the Box — Cox model in (4) is similar.




It is therefore clear from comparing (11) and (12) that for a general innovation function f,
we have

£ =) = (o 0) Y. (13

Given the risk neutral dynamic in (9) and (10), the price of a European call option can be
computed as

C(hs (6, X)) = exp(—r(T — t)) E¢[max(Sr — K, 0)|Q 1], (14)

However, we do not have an analytical expression for this option price. Because the multi-
period distribution of the GARCH process is unknown, we need to compute the conditional
expectation using Monte Carlo simulation, the details of which will be discussed below.

As mentioned above, we can implement the option valuation models in two steps. In
a first step, we obtain estimates 5 and A for the parameters 6 and A under the physical
probability measure using a time series of returns as described in section 2.1. In a second
step, we use these parameters in the risk neutral dynamic (10) and compute the option price
using (14). The fit of a volatility model can then be assessed using standard loss functions.

Following much of the existing literature, we use mean-squared dollar errors.”

SMSE = %Z (Ci = Clha(8,2))° (15)

where C; is the market price of option i, (ht(é, 5\)) is the corresponding model price, and
N is the total number of contracts in the sample. The sample can consist of a number of
contracts on a given day, or a number of contracts on different days.

2.3 Estimating the Volatility Process Under the Risk-Neutral Prob-
ability Measure Using Option Prices and Asset Returns

In this section we describe an alternative approach to estimating the parameters of the volatil-
ity process and testing the option valuation models. The approach described above that
estimates the parameters under the physical probability measure is conceptually straight-
forward and computationally easy. However, for the purpose of option valuation, it may be
preferable to estimate the parameters directly using (a different set of) option prices. One
possible alternative is to use just one cross-section of option prices at some point in time to
estimate. For instance, if we use a mean-squared dollar objective function, we can obtain
model parameters by minimizing

SMSE = % ST (Cix — Cia(he(67))? (16)

%

"The choice of loss function is an important and often ignored topic. See Renault (1997) for a careful
discussion.



where 6* is the vector of risk-neutral parameters to be estimated and /V; is the number of
option prices present in the sample at time ¢. Alternatively, if we choose to use more than
one cross-section of option prices to estimate the parameters, then we can link volatility on
different dates using the time-series of stock returns. The objective is again to minimize the
sum of squared option valuation errors in

SMSE = Ni ST (Cix — Cia(he(6))? (17)

T ¢4

where Np = Z N; and T is the total number of days included in the sample. The updating

from h; to ht+1 is done using the observed daily returns, R; on the underlying asset, by sub-
stituting (12) in (3), which yields an updating function that exclusively involves observables

he = Go + Bihe1 + Bohyr f <[<Rt1 —7r+ %ht1> /\/ﬂ} - )\> (18)

There is a technical issue regarding identification when estimating under the risk-neutral
probability measure. This issue is best illustrated using a specific model rather than using
the general notation involving the innovation function f(z; 1). For example, in the case of
the Leverage model, the option valuation formula involves the returns formula (9) and the
risk-neutral volatility process is

B (6.0) = fo + Bihus + Bohes (54— 0= 2) (19)

Notice that we cannot separately identify A and 6 from (9) and (19), as we can only estimate
0* = 0 + A. It is often thought that by including several cross-sections of options in the
sample, one can separately identify A and #, because of the use of the volatility updating
formula, which is in obtained under the physical probability measure. However, notice that
for the leverage model the volatility updating formula (18) becomes

he = o+ Brhes + Pohes <[<Rt -t ht 1)/%} >\+9> (20)

So clearly we cannot separately identify A and 6 when estimating under the risk-neutral
probability measure, as we only estimate 6* = 0 + \.® This is not a problem for option
valuation, because all we need is the combination 6 + A, but it is an important difference
compared to the technique described above, where we separately identify A and 6 using
the physical probability measure and then use the sum of the two parameters for option

8We choose to estimate 8* = § + . If one only estimates under the risk neutral measure one can equiva-
lently assume that XA = 0, which trivially identifies ¢ (see Hsieh and Ritchken (2000)).



valuation. This remark applies for all of the models we investigate, as they all involve the
same functional form in 6.

We have described two approaches to estimating parameters for use in option valuation
models. The first approach consists of using the time series of asset returns to estimate
the parameters under the physical probability measure. Subsequently these parameters are
mapped into the risk-neutral parameters, and plugged into the option valuation formulas.
The second approach is to estimate the risk-neutral parameters directly from option prices.
If we use just one cross-section of option prices, this approach is relatively straightforward.
If we use multiple cross-sections, we have to use a volatility updating rule.!®

A priori we would expect the second approach to work better, for several reasons. First,
option prices contain forward looking information over and beyond historical returns, and
thus using option prices to find parameters can have an important advantage simply from
the perspective of the data used. Second, when using maximum likelihood to estimate
parameters under the physical measure, it is clear that the loss function is quite different
from an out of sample loss function which could be something like the mean-squared dollar
errors in (15).

3 Data

We conduct our empirical analysis using four years of data on S&P 500 call options. First,
the three-year period between June 1, 1988 and May 31, 1991, which we denote Sample A is
used exclusively for in-sample estimation. This sample closely corresponds to the data used
by Bakshi, Cao and Chen (1997).!1! We subsequently use a fourth year of data covering the
period from June 1, 1991 to May 31, 1992, which we refer to as Sample B. We apply several
filters to Sample B that are identical to the ones used in Bakshi, Cao and Chen (1997), and
we refer the reader to that study for the details.

In both samples, we only use options data for Wednesdays.'? If Wednesday is a holiday,

Tt is important to remember that this issue is simply a consequence of the way in which the parameter
A enters the innovation function, and therefore a consequence of the assumptions on the discount factor (or
the price of risk). Also, it must be emphasized that in principle one could identify A and 6 separately, for
instance by specifying a joint likelihood function for returns and options prices. By using the updating rule
(18), returns data are only implicitly taken into account in the objective function, and this does not identify
A

10When we use multiple cross-sections of options data, we therefore use joint information on returns and
options prices, but the information on returns only enters the objective function indirectly. This approach
is also followed by Heston and Nandi (2000) and Hsieh and Ritchken (2000) in a discrete-time environment.
In a continuous-time environment, Eraker (2000) and Jones (2000) use a likelihood-based approach that
combines options and returns data, and Chernov and Ghysels (2000) and Pan (2000) use a GMM approach
to combine both types of data.

HThe three years of data was graciously provided to us by Gurdip Bakshi.

2This choice is to some extent motivated by constraints. Because we cannot compute option prices

10



we use the next trading day. Using only Wednesday data allows us to study a fairly long time-
series which is useful considering the highly persistent volatility processes. An additional
motivation for only using Wednesday data is that following the work of Dumas, Fleming
and Whaley (1998), several studies have used this setup (see for instance Heston and Nandi
(2000)). For our empirical work, this data selection criterion leaves us with 156 cross-sections
of options data in the June 1, 1988 to May 31, 1991 period and 52 cross—sections of options
data in the June 1, 1991 to May 31, 1992 period.

Table I presents the number of contracts used in the empirical work for Sample A and
B by moneyness and maturity. It can be seen that the relative importance of the different
cells is fairly similar across periods. Tables II and III present average prices and implied
volatilities for both sample periods. Given the differences between option prices in different
cells in Table II, it is clear that different options will receive different weights when using the
mean-squared dollar objective function (15). Table III indicates that in both sample periods
we find implied volatility patterns across maturity and moneyness that are comparable to
those found in other studies. In-the-money calls (and therefore also out-of-the-money puts)
are expensive relative to the Black-Scholes model.

To give an idea of the differences in returns over the sample, Figure II plots the S&P 500
daily log returns and daily absolute log returns from CRSP for the option sample period.
The vertical line separates the Sample A and B periods. It can be seen that the patterns
in returns are fairly similar over the two periods, and that there are occasional outliers in
returns. Figure III presents a similar plot for the average implied volatilities extracted from
the options on a week-by-week basis. It can be seen that just as is the case with returns,
implied volatility varies considerably. Interestingly, the level of implied volatility in Sample
B is lower than in Sample A. Also, it is evident from Figure III that there is substantial
clustering in implied volatilities.

4 Empirical Implementation and Results

In this section we discuss our empirical results for Sample A and B. We also discuss some of
the details related to implementation that were not discussed above. First, we present the
results from maximum likelihood estimation of the parameters under the physical probability
measure. Second, we discuss the performance of the option valuation models using those
physical parameters. Third, we discuss the estimation of parameters using options from
Sample A (June 1, 1988 to May 31, 1991) and returns. We also discuss the performance
of the different option valuation models for this in-sample exercise. Fourth, we use the
parameters estimated using Sample A options and asset returns to price options in Sample
B (June 1, 1991 to May 31, 1992). Fifth, we evaluate the performance of the option valuation

analytically, the optimization problems are fairly time-intensive, and limiting the number of options reduces
the computational burden.

11



models in Sample B in a different way, by re-estimating the models every week and valuing
the options one week out-of-sample.

4.1 Maximum Likelihood Estimation of Physical Processes Using
Returns

Table IV shows parameter estimates obtained by maximization of the log-likelihood function
(6). Robust standard errors are computed according to White (1982). For the riskless interest
rate, we have assumed a constant 5% yearly rate leading to a daily rate of .05/365=0.000137.
It is well-known that it is difficult to estimate GARCH parameters precisely from returns
data unless long time-series are used. For comparable models, Hentschel (1995) and Ding,
Granger and Engle (1993) use more than 50 years of daily data. Here we present results
obtained using a twelve year period beginning at the start of our options data set and ending
on December 31, 1999.13

The results are comparable with standard findings in the literature on GARCH processes.
First, consider the Simple and Leverage models. Parameter estimates for 3; and 3 are
very precise and roughly of the same order of magnitude as in the existing literature. In the
Leverage model the estimate of the parameter 0 is positive, indicating negative skewness.!*
The persistence of the process implied by these parameter estimates is 0.9823, indicating
a very persistent process, again in accordance with the literature. Finally, the standard
deviation of returns implied by the model parameters is 0.1786, which is reasonable.

While implied persistence and standard deviation for the three more richly parameterized
models News, Power and Power&News are very similar to the Leverage model, other
estimation results differ between the models. While in the News model the additional
parameter k is not estimated significantly, the power parameter -y is estimated significantly
smaller than one in the Power and Power& News models. Interestingly, the parameter & is
estimated significantly in the Power& News model, but the estimate of the € parameter in
this model is very different from the other models and no longer significant. The combination
of k and v is apparently able to capture part of the leverage effect previously estimated by 6.
Note also that the Box — Cox model has a power parameter ¢ which is about two standard
deviations below 1.

Finally, and probably most importantly, the likelihood ratio tests indicates that any
model is preferred to the Simple model. When testing against the Leverage model, the

BEstimation with shorter sample periods vielded roughly comparable point estimates but lower t-statistics.
We therefore start the sample at the beginning of the options data sample and include all subsequent returns
available through CRSP.

This estimate also indicates a negative relationship between shocks to returns and volatility, labeled
the “leverage effect” by Black (1976). This effect has been documented by a large number of studies that
estimate stock returns. Using option prices the presence of this effect has been confirmed among others by
Benzoni (1998), Chernov and Ghysels (2000), Fraker (2000), Heston and Nandi (2000) and Nandi (1998).
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Power and Power&News models are found to be significantly better, but the News and

Box — Cox models are not.!®

4.2 Option Valuation with ML Estimates of Physical Processes

Table V presents results obtained by using the parameters obtained in Section 4.1 to price
options in Sample A (June 1, 1988 to May 31, 1991) as well as in Sample B (June 1, 1991
to May 31, 1992). To assess the models’ fit, we present the mean squared dollar error loss
as well as its square root, which expresses the valuation error in dollar terms

SRMSE — | — > (Cip = Cia(hu(, X))2 (21)
Ny t,i

where C;; is the market price of contract i on day ¢, C’i,t(ht(é, 5\)) is the corresponding
model price, and Nr denotes the total number of contracts available. The evidence can be
summarized very briefly. First, in comparison with the average option prices reported in
Table II, the $RM SFE errors are very large. Second, the more complex models perform even
worse than the Simple and Leverage model, which are nested in the more complex models.
Especially in light of its poor performance using the Maximum Likelihood criterion above,
it is indeed shocking that the Simple model performs the best in terms of option valuation.
Thus our first conclusions emerge: Parameters from MLE on returns only should not be
used for option valuation, and furthermore, inference procedures from MLE criteria are not
reliable to rank the models’ performance in option valuation.'®

4.3 NLS Estimation of Risk Neutral Processes Using Options and
Returns
In this section we present estimation results obtained using 156 Wednesdays of options data

from Sample A. For all models, the objective function used is the (square root) dollar mean
squared error loss function (21). Model option prices are obtained using (9), (10) and (14),

15Tt must be noted that the Simple model in this paper sets the price of risk A equal to zero. Allowing for
a nonzero X in the Simple model will induce a leverage effect under the risk neutral measure even when none
exists under the physical measure. To avoid any type of leverage aflect under any measure for the Simple
model, we implement the model with A = # = 0. Our estimates therefore imply a symmetric news impact
function under both measures.

16These results are somewhat different from existing ones in the literature. Amin and Ng (1993) perform
a similar analysis using data on single stock options and report much smaller option valuation errors. Hardle
and Hafner (2000) estimate model parameters under the objective distribution but use relative valuation
errors. Bollerslev and Mikkelsen (1996) analyze leaps. Their results are therefore difficult to compare to the
ones in this paper.
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and volatility is updated using (18). In order to compute the option prices numerically,
we use 1000 simulated paths,!” and we use the empirical martingale method of Duan and
Simonato (1999) to increase numerical efficiency. We also use stratified random numbers,
antithetic variates, and a control variate technique using the Black-Scholes price as the
control.

There are some important issues regarding the implementation of this empirical exercise
that deserve elaboration. First, there are several ways to treat the initial conditional volatil-
ity. For instance, Bakshi, Cao and Chen (1997) treat the initial conditional volatility as an
extra parameter in the implementation of a continuous-time option valuation model. This
approach could also be followed for the estimation of discrete-time processes, but instead
we follow Heston and Nandi (2000) and set the initial volatility equal to the unconditional
volatility 250 days before the first Wednesday that is included in the sample. Subsequently,
we use the volatility updating rule (18) for the next 250 days to obtain the conditional
volatility for the first Wednesday used in the sample.

A second issue regarding implementation is the size, nature and length of the option
valuation sample. Our motivation in selecting the sample is essentially to use the longest
time span possible, while limiting the number of contracts to limit computation time. There
are several good reasons for preferring a long sample. First, as emphasized by Heston and
Nandi (2000), if the option valuation model is a reliable one, it should price options well over
any time horizon, because it has implications for the returns process as well as for option
prices. Second, from a practical perspective, a long sample of option prices is preferable for
the same reason a long sample of returns is preferable, because the time variation in prices
and volatility will help identify the model’s parameters. We experimented with several types
of samples for option prices. First, following the work of Bakshi, Cao and Chen (1997)
and Duan (1996), we experimented with estimating the parameters using a single cross-
section of option prices. This is a convenient approach but unfortunately for the models we
investigated it is not satisfactory. The objective function is not sufficiently well behaved
and numerical problems are so serious that the results become impossible to interpret. A
second approach is to use multiple cross-sections of option prices. We experimented with
six-month samples of options, following the example of Heston and Nandi (2000). While this
approach was more satisfactory, it still occasionally gave rise to numerical problems. We
therefore decided to use a long, three-year sample of options data to estimate the model’s
parameters. Extensive sensitivity analysis demonstrated that the results for this approach
are robust. As mentioned above, we only include Wednesdays in the sample following the
setup in Dumas, Fleming and Whaley (1998) and Heston and Nandi (2000). It would be
prohibitively expensive in terms of computer time to use all trading days in the three-year
sample. The design of our empirical experiment can therefore be summarized as follows:

"To verify that 1000 draws are adequate, we repeated our analysis for a limited number of cases using
5000 draws and obtained identical results.
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we believe that for estimation purposes, it is preferable to use 156 consecutive Wednesdays
rather than 156 consecutive trading days.

Table VI presents the results for the nonlinear least squares estimation of the risk-neutral
parameters. As in Table IV, the riskless rate of return is set at 5% yearly leading to a daily
rate of .05/365=0.000137. A number of results are noteworthy. First, the persistence
for all models is extremely high and roughly the same for the four models. Persistence is
higher than the persistence for the physical process in Table IV, even when transforming the
physical parameters to risk neutrality. The implied standard deviation of the four models is
roughly comparable and reasonable.

To understand these results, consider the simple Leverage model. Leverage under the
physical measure is simply f, but under the risk neutral measure it is 0 + X\ which is greater if
the price of risk is positive. Volatility persistence under the physical measure is 3; + 32(1+6?)
and under the risk-neutral measure it is 81 +G2(1+ (6 +)?) which is higher than the physical
persistence for a positive § (implying negative skewness) and a positive price of risk A.

When comparing the estimated parameter values across models in Table VI, it is of
interest to remember that in many cases it is combinations of parameters that determine
the model’s most important characteristics, and not necessarily the individual parameters.
For instance, the model’s persistence is an important model characteristic and persistence
is determined by a combination of all the model’s parameters. Nevertheless, it is tempting
to compare individual parameter estimates across models. For instance, the parameter (3,
which determines the model’s unconditional volatility, is estimated in a fairly narrow range
across the four models. Another important parameter is the 0* = 6 + A combination, which
indicates the size of the leverage effect. This effect is forced to zero in the Simple model. It
is seen that 0* is estimated at 2.9939 for the Leverage model, and somewhat lower for the
more richly specified models. We therefore conclude that some of the effects captured by
the parameters k and v are captured by the leverage effect if k and vy are omitted. It is
also noteworthy that when x and ~ are both estimated in the Power&News model, their
estimates are not very different from the ones obtained in the News and Power models
respectively. Finally we see that the power parameter in the Box — C'ox model is much
higher compared to the estimate in Table IV, but still roughly two standard deviations
below 1.

The most important conclusion from Table VI is obtained by comparing the estimation
results with those of Table IV, obtained under the physical probability measure. For each
model, the resulting two sets of parameter estimates are related by virtue of the precise form
of the risk neutralization discussed in Section 2.2. It can be seen that implied parameter
estimates are quite different. The most important differences are the following. First, for
all models, the estimates of Gy are not just different, but of a different order of magnitude.
Second, the estimate of 8* = 6 4+ X\ implied by Table IV is positive for all models except
for the Power& News model. However, it is always much smaller than the corresponding
estimate in Table VI, implying a much smaller leverage effect even after adding A for proper

15



comparison. A likely culprit is that A is poorly estimated under the physical measure where
it only enters the conditional mean equation. Third, the estimates of k in Table IV have
a different sign than the ones in Table VI, even though the parameter is not significantly
estimated for the News model. On the other hand, the estimates of  in Table IV are not
too different from those in Table VI. Nevertheless, it is clear that if the parameter estimates
in Table VI are fairly accurate, it is perhaps not surprising that the parameter estimates
from Table IV price options so poorly, as documented in Table V and Section 4.2.1%

4.4 Option Valuation with NLS Estimates of Risk Neutral Pro-
cesses

When comparing the six models in-sample, the most important criterion is the value of
the minimized objective function. These values are presented in the last row of Table
VI and repeated with more detail in the first panel of Table VII. First, we note that all
GARCH models outperform the Black-Scholes model as well as the Practitioner’s Black-
Scholes (PBS) model from Dumas, Fleming and Whaley (1998) in Sample A.!® Table VII.A
presents two versions of the PBS model, where all parameters are kept constant throughout
the in-sample period. The PBS model is estimated using either OLS on implied volatility or
NLS minimizing $MSE.?°

It is clear that the extra parameters in the News, Power and Box — C'ox models do not
improve the fit of the model, as the SRMSE is only slightly lowered from 1.0445 to 1.0410,
1.0400 and 1.0440 respectively. However, the combination of £ and  in the Power&News
model lowers the SRMSE to 1.0106. Interestingly, this pattern is similar to the one obtained
in Table IV, when estimating under the physical probability measure. In Table IV, the
change in the log likelihood for the News and Box — C'ox models is very small, and the
Power& News model yields a bigger change in the log likelihood.

Figure IV provides more insight into the valuation differences between the models by
comparing the option prices from each model with the Black-Scholes price for the same

18Tt is not clear whether this lack of consistency between the objective and risk-neutral parameters is a
consequence of a badly specified volatility model or a badly specified price of risk. Chernov and Ghysels
(2000) make the same point and formally test the mapping from the objective to the risk-neutral measure.

9The PBS model simply assumes a second order polynomial in strike price and maturity for the implied
Black-Scholes volatility. It must be noted that the implementation of the PBS model reported on in Table VI
is different from the one in Dumas, Fleming and Whaley (1998). The coeflicients in the polynomial used for
Table VI are constant across the sample to ensure comparability of the results with the implementation of
the GARCH models in this table. In Dumas, Fleming and Whaley (1998), the coeflicients of the polynomial
are constant for a given day only. We present an empirical analysis that is identical to the one in Dumas,
Fleming and Whaley (1998) below.

20The PBS model is traditionally implemented using an OLS setup (see Dumas, Fleming and Whaley
(1998)). Christoffersen and Jacobs (2001) demonstrate that the pricing errors can be lowered by using a
NLS setup.
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option. For each model, the risk-neutral parameter estimates in Table VI are used. The call
price from each model is plotted against moneyness for three maturities. Similar figures are
shown in Heston (1993) for his stochastic volatility model. The initial conditional volatility in
each GARCH model is set to its unconditional value as implied by the assumed parameters,
and the volatility used for Black-Scholes valuation is set to this conditional volatility. It must
be noted that this setup ensures that the Black-Scholes price has the best possible chance
of matching the GARCH prices, because the initial volatilities are the same across models.
We see that the Simple model yields very small deviations from the Black-Scholes model
across maturities. The other models, particularly the Box — C'ox model, display systematic
differences from Black-Scholes, enabling the models to fit observed patterns in the data such
as implied volatility smirks. The differences between the GARCH models and Black-Scholes
are smaller for short maturities, partly as a result of the lower values of these options.

Table VIII.A further elaborates on these findings by presenting SRMSEs by moneyness
and maturity for the four models (for Sample A). A first interesting finding from these tables
is that in certain cells there are notable differences between the Leverage, News and Power
models. The differences between these three models are perhaps surprising, because on the
basis of the overall fit in Table VII, one might have concluded that the three models yield
nearly identical option prices. Table VIII.A indicates that this is not the case.

It can also be seen from Table VIII. A that even though the overall fit of the Power& News
model is better than that of the other three models, this does not mean that this model does
a better job of valuing all options. It is not a surprise that the most important improvements
over the other three models are made for short and medium maturity options. The reason
for this is that differences between GARCH models are more likely to be significant for short
and medium-horizon forecasts, while they even out over long horizons where the conditional
volatility approaches the unconditional. Furthermore, for the short and medium maturities
improvements are made primarily for options that are in the money. The reason for this
is that in-the-money options are more expensive and therefore carry more weight in the
objective function.

All of the evidence discussed above pertains to in-sample evaluation of the option val-
uation models. However, from a practitioner’s perspective out-of-sample valuation perfor-
mance is much more important. The second panel of Table VII.A investigates out-of-sample
valuation performance by using the model parameters estimated in Table VI (using Sample
A) to evaluate the models’ performance in Sample B. The most important conclusion is
that the ranking of the models is reversed compared to the in-sample exercise. While the
most richly parameterized model (Power& News) has the best in-sample performance, it has
the worst out-of-sample performance except for the Simple model. Conversely, the most
parsimonious model (Leverage) has the worst in-sample performance, but performs better
than the other models out-of-sample. Table VIII.B breaks down model performance across
moneyness and maturity. By simply comparing the two models with the best and worst
overall out-of-sample fit, it becomes clear that comparing the models’ valuation performance
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is less than straightforward. While the overall fit of the Power& News model is significantly
worse than that of the Leverage model (31.1571 versus $0.9777 in SRMSE terms), it still
outperforms the Leverage model for some deep in-the-money options. However, for long-
maturity in-the-money options, the performance of the Power&News model is relatively
poor.

Table VIL.B compares the accuracy of the models using the Diebold and Mariano (1995)
test on the weekly SRMSEs from Sample B, keeping the parameters fixed at their Sample
A values. We test each model against the Leverage model. Not surprisingly, the Simple
model is rejected as are the Black-Scholes and the PBS(OLS) model. None of the alternative
GARCH models are significantly different from the Leverage model.

The following broad conclusions emerge from the results in Tables VII and VIII: First,
even when using relatively large samples (for example, sample A contains more than 8,000
option contracts) and for the parsimonious models (3-7 parameters) studied here, results from
in-sample estimation do not carry over to out-of-sample experiments. Second, when using
options to estimate the parameters, the Simple model without leverage effect and price of
volatility risk performs poorly. This is in stark contrast to the returns-based analysis in Table
IV where the Simple model performed the best for option valuation. Third, all GARCH
models (except for the Simple model) outperform the Black-Scholes model as well as the
Practitioner Black-Scholes model from Dumas, Fleming and Whaley (1998) with constant
parameters throughout the period.

4.5 Option valuation with Weekly Updating

The conclusion from the out-of-sample exercise is that one should use the parsimonious
Leverage model rather than the more richly parameterized models. However, it may be ar-
gued that the out-of-sample exercise we conduct is very different from the way these models
are typically used by practitioners. A typical critique on our analysis of the model’s per-
formance would be that it is unrealistic to assume that the model’s parameters are constant
over a four-year period (the three years of the in-sample exercise and the one year of the
out-of-sample exercise).?!
tion where we allow the model parameters to change over time. We work exclusively with
the data in Sample B (June 1, 1991 to May 31, 1992) and conduct the following exercise: for
each model we estimate different parameter values every Wednesday and use these parameter
values to price the options the next Wednesday. In addition to using one cross-section of
option prices, we also use the volatility updating rule (18) for the 250 days predating the
Wednesday used in the estimation exercise. It turns out that by (indirectly) incorporating

We now investigate the robustness of our conclusions in a situa-

2'Qur estimation and testing methodology is similar to that of Heston and Nandi (2000), who estimate
parameters over a six-month period and subsequently evaluate the model out-of-sample over the next six
months. Obviously our estimation period is longer, as explained above, because we did not always obtain
satisfactory results using the six month periods.
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this extra information on returns in the objective function, the optimization problem is much
better behaved.

Table IX contains the results of the weekly estimation analysis. The most important
part of the Table are panels B and C, which report the results of the one-week ahead exercise.
For each of the 52 Wednesdays, we evaluate the fit of each cross section using parameters
estimated from the previous Wednesday and returns data for the 250 days preceding it.??
A first important conclusion is that the SRMSEs in Table IX are much lower than the cor-
responding numbers in Table VII. For example, the Sample B average dollar error for the
Leverage model is 0.7081 with weekly updating, compared to 0.9777 when parameter esti-
mates are not updated. When testing the average weekly SRMSEs in panel C of Table IX, the
conclusions from the out-of-sample analysis in Table VII are reinforced. The parsimonious
Leverage model is not outperformed by any of the alternative models and it outperforms
several other GARCH models as well as Black-Scholes and the PBS(OLS) model, which is
now updated every week. Remarkably, the Leverage model is not significantly outperformed
by the PBS(NLS) model, which is estimated minimizing $MSE.

For completeness, the panel A of Table IX presents the in-sample fits using parameters
that are updated weekly. In addition, Figure V presents the SRMSEs for each of the 52
Wednesdays in Sample B, both for the in-sample and out-of-sample analysis. It can be seen
that out-of-sample, the relative performance of the four models can differ substantially from
week to week.

In summary, the empirical out-of-sample results with weekly updating confirm the earlier
out-of-sample results. When considering a family of GARCH models that includes a large
number of existing models, there seems to be no good reason to look beyond a model that
allows for volatility clustering and a leverage effect. While in-sample analysis on options
data and estimation on returns data may suggest more richly parameterized models, the
out-of-sample performance of those models is rather disappointing. Conversely, the compar-
isons between the GARCH option valuation models and the PBS models can be interpreted
as being rather positive for GARCH models. All GARCH models, bar the Simple one, out-
perform the PBS(OLS) model in and out of sample in our paper. The equally simple but
tougher competitor PBS(NLS) is only marginally better than the best GARCH model.

5 Summary and Directions for Future Work

This paper compares the performance of a number of GARCH models using specifications
related to those of Ding, Granger and Engle (1993) and Hentschel (1995). In the existing
literature, different GARCH are typically judged by comparing the log-likelihood based on
a time-series of asset returns. In this paper, we investigate the performance of these models

220bviously daily returns data between the two Wednesdays are also used to obtain the initial conditional
volatility.
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for the purpose of valuing options. We find that a comparison of the in-sample fit (based
on dollar squared errors) favors the most richly parameterized model, as does a likelihood-
based comparison that uses the time-series of asset returns. However, when assessing the
performance of the models out-of-sample (again using dollar squared errors), the data favor
the more parsimonious model that only contains a leverage effect.

The potential consequences of these findings for the GARCH literature are far-reaching.
The advantage of the specifications of Ding, Granger and Engle (1993) and Hentschel (1995)
is that they nest a large number of existing GARCH models. While these specifications do not
nest all existing models, and while it is of course possible that we can find different GARCH
specifications that perform more satisfactorily for the purpose of option valuation, it is safe
to conclude that these findings question somewhat the value of the extensive literature that
formulates complex alternatives to GARCH models that contain volatility clustering and a
leverage effect. The reason that this finding is not articulated in the existing literature is
that existing comparisons are often in-sample, and most often based on the model’s likelihood
value, which may not have an obvious relationship with more relevant objective functions
based on hedging or speculation.

Our findings also have consequences for other literatures. In particular, because continuous-
time stochastic volatility models can be thought of as the limits of GARCH processes, our
results suggest that little may be gained in that literature from volatility dynamics different
from models such as Heston (1993), which contains a leverage effect and allows for volatility
clustering. Instead, more may be gained from changing the specification of other building
blocks of the model, such as jumps.

Our results suggest that most likely, more is to be gained by more radical departures
from the modeling assumptions used in a traditional simple GARCH model. For instance,
modeling deviations from normality in the innovations process may prove instructive. Also,
all models investigated in this paper share the same specification for the price of risk. It may
be worthwhile to model the price of risk differently, especially because a comparison of the
parameters estimated under the physical and risk-neutral probability distributions indicates
such significant differences.
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SIX <.94

94 <SX<.97
.97 <SX <1.00
1.00<S/X <1.03
1.03< S/X <1.06
1.06 < S/X

Tota

SIX <.94
94<SX<.97
.97 <SX <1.00
1.00<S/X <1.03
1.03<S/X <1.06
1.06 < S/X

All

SIX <.94

94 <SX<.97
.97 <SX <1.00
1.00<S/X <1.03
1.03< S/X <1.06
1.06 < S/X

All

Tablel: Number of Contracts Across Moneynessand Maturity

Sample A SampleB
DTM <60 60<DTM<180 180<DTM Total DTM<60 60<DTM<180 180<DTM
164 641 515 1320 SX <.94 49 222 173
436 413 207 1056 94<S/IX <97 170 201 104
558 400 202 1160 97<9X <100 233 193 82
523 357 172 1052 100<S/X <1.03 214 187 97
474 312 137 923 103<SX <1.06 199 160 63
1015 985 570 2570 1.06 < S/X 346 332 179
3170 3108 1803 8081 Total 1211 1295 698
Tablell: Average Quoted Price Across M oneyness and Maturity
Sample A Sample B
DTM <60 60<DTM<180 180<DTM All DTM<60 60<DTM<180 180<DTM
1,52 5,05 10,20 6,62 SX <.94 0,82 3,36 9,40
2,63 9,69 18,93 8,59 94<S/IX<.97 1,81 7,80 17,80
535 14,97 24,93 12,08 97<9X <100 4,86 13,50 24,00
11,14 21,38 31,84 18,00 100<S/X <1.03 11,80 20,90 31,90
18,58 28,35 37,01 24,62 103<SX <1.06 20,60 29,00 40,20
40,35 50,39 62,65 49,14 1.06 < S/X 40,00 48,30 60,30
18,92 25,53 33,53 24,72 All 18,12 22,78 31,33
Tablelll: Average Implied Volatility Across Moneynessand Maturity
Sample A Sample B
DTM <60 60<DTM<180 180<DTM All DTM<60 60<DTM<180 180<DTM
0,1786 0,1706 0,1668 0,1701 SX <.94 0,1339 0,1377 0,1506
0,1652 0,1719 0,1765 0,1700 94<S/IX <.97 0,1346 0,1461 0,1607
0,1712 0,1821 0,1858 0,1775 97<9X <100 0,1445 0,1566 0,1722
0,1901 0,1941 0,1976 0,1927 100<S/X <1.03 0,1626 0,1704 0,1781
0,2172 0,2047 0,1942 0,2096 103<SX <1.06 0,1847 0,1824 0,1896
0,3131 0,2363 0,2179 0,2626 1.06 < S/X 0,2574 0,2104 0,2037
0,2262 0,1992 0,1912 0,2080  All 0,1847 0,1707 0,1756

Totd

475
508
498
422
857
3204

All
543
7,85
11,23
19,13
26,71
47,46
22,88

All
0,1423
0,1452
0,1536
0,1685
0,1846
0,2280
0,1771

Notes: We report various descriptive statistics on our two subsamples of options. Sample A denotes June 1, 1988 - May 31, 1991, and Sample B denotes
June 1, 1991 - May 31, 1992. Each statistic is reported for three maturity bins and six moneyness bins.



TablelV: Maximum Likelihood Estimates of Physical Processes

Simple Leverage News Power Power& News Box-Cox

r 1,37E-04 1,37E-04 1,37E-04 1,37E-04 1,37E-04 1,37E-04
0,0452 0,0455 0,0465 0,0456 0,0464
0,0185 0,0185 0,0186 0,0185 0,0186

b 1,84E-06 2,24E-06 2,30E-06 2,05E-06 1,98E-06 8,42E-06

2,27E-07 1,82E-07 1,85E-07 1,92E-07 1,85E-07 5,44E-06

b, 0,8873 0,8524 0,8601 0,8397 0,8531 0,8615
0,0054 0,0052 0,0101 0,0107 0,0126 0,0050
b, 0,0984 0,0867 0,0771 0,1217 0,1881 0,0990
0,0026 0,0053 0,0102 0,0186 0,0260 0,0084
q 0,7061 0,5605 0,6328 -0,1056 0,6381
0,0845 0,1508 0,0757 0,0728 0,0778

K 0,1267 0,7025

0,1093 0,0840

c 0,8505 0,5335

0,0626 0,0481
y 0,8541
0,0701
Persistence* 0,9857 0,9823 0,9821 0,9877 0,9931 0,9810
Annual Std. Dev. 0,1799 0,1786 0,1796 0,2049 0,2696 0,1681
LogLikelihood 10590,3 10639,0 10639,6 10640,8 10651,3 10639,7
LR P-Value (Simple) 0,0000 0,0000 0,0000 0,0000 0,0000
LR P-Value (Leverage) 0,2690 0,0561 0,0000 0,2319

Notes: We estimate the six GARCH models using Maximum Likelihood on daily S& P500 returns from
June 1, 1987 through December 31, 1999 for atotal of 3,182 observations. Standard errors from White
(1982) appear below each estimate. The persistence and the annualized standard deviation implied by
each model is reported at the bottom of the table. *) For the Box-Cox model persistence refersto the
power of volatility rather than volatility itself. The LR P-values refer to Likelihood ratio tests of the
null hypothesis that a particular model fits the return data no better than the Smple GARCH model or
the Leverage GARCH model respectively.



TableV: Fit of Option Pricesfrom ML Estimates of Physical Processes

Sample A Simple Leverage News Power Power& News Box-Cox
$MSE 3,7623 49827 47751 8,7663 19,7077 6,6071
$RMSE 1,9397 22322 2,1852 2,9608 4,4393 2,5704
Sample B Simple Leverage News Power Power& News Box-Cox
$MSE 5,6770 9,0601 8,6060 16,0743 32,9882 12,3743
$RMSE 2,3827 3,0100 2,9336 4,0093 5,7435 3,5177

Notes: We transform the physical MLE estimates from Table 1V into risk neutral parameters and
calculate GARCH option prices for each contract in Sample A (June 1, 1988 - May 31, 1991, 8,081
contracts) and in Sample B (June 1, 1991 - May 31, 1992; 3,204 contracts). Using the actual observed
market price for each option, we then calculate $M SE and $RM SE for every model on both samples.



TableVI: NLS Estimates of Risk-Neutral Processes. Sample A

Simple Leverage News Power Power& News Box-Cox
r 1,37E-04 1,37E-04 1,37E-04 1,37E-04 1,37E-04 1,37E-04
b, 4,89E-07 5,92E-07 5,79E-07 5,92E-07 5,66E-07 9,64E-07

1,75E-08 9,74E-09 9,63E-09 9,75E-09 9,82E-09 2,65E-07

b, 0,9699 0,8629 0,8666 0,8649 0,8253 0,8735
0,0007 0,0037 0,0041 0,0030 0,0038 0,0058
b, 0,0250 0,0133 0,0209 0,0291 0,1832 0,0163
0,0007 0,0003 0,0245 0,0023 0,0166 0,0017
g+l 2,9939 2,9190 2,3321 2,4186 2,7391
0,0737 0,0790 0,0784 0,0525 0,1381
k -0,1933 -0,6217
0,4760 0,0285
C 0,8306 0,7193
0,0184 0,0157
y 0,9466
0,0294
Persistence* 0,9950 0,9959 0,9962 0,9961 0,9962 0,9953
Annual Std. Dev. 0,1562 0,1912 0,1949 0,1950 0,1950 0,1688
$MSE 2,6028 1,0910 1,0836 1,0817 1,0214 1,0900
$SRMSE 1,6133 1,0445 1,0410 1,0400 1,0106 1,0440

Notes: We estimate the risk-neutral dynamics for each GARCH model directly by fitting the observed
option prices using a nonlinear least squares routine to minimize $M SE. Only optionsin Sample A
(June 1, 1988 - May 31, 1991; 8,081 contracts) are used in estimation. Standard errors are reported
below each parameter estimate. The bottom of the table reports the risk-neutral volatility persistence
and the risk-neutral annualized standard deviation implied by the GARCH parameters. *) For the Box-
Cox model persistence refersto the power of volatility rather than volatility itself. We also report the
$M SE and $RM SE at the parameter optima.



Table VII.A: Fit of Option Pricesfrom NLS Risk-Neutral Estimates.

Sample A Fit Simple Leverage News Power Power&News Box-Cox Black-Scholes PBS(OLS) PBS(NLS)
Sample SMSE 2,6028 1,0910 1,0836 1,0817 1,0214 1,0900 3,7351 3,6157 2,9307
Sample $SRM SE 1,6133 1,0445 1,0410 1,0400 1,0106 1,0440 1,9326 1,9015 1,7119
Sample B Fit

Sample SMSE 2,4250 0,9777 0,9684 1,0197 1,1571 0,9825 4,0112 3,5982 1,4511
Sample $SRM SE 1,5573 0,9888 0,9841 1,0098 1,0757 0,9912 2,0028 1,8969 1,2046

TableVII.B: Comparing Weekly Predictive Accuracy with the L everage M odel

Sample B Simple Leverage News Power Power& News Box-Cox Black-Scholes PBS(OLS) PBS(NLS)
Mean Weekly $SRMSE 1,5169 0,9032 0,9002 0,9278 1,0020 0,9062 1,9535 1,7662 1,1298
DM-Test Value 6,9936 -1,4427 1,5817 1,3143 1,2179 15,2805 6,3207 1,7858
P-Value (2-sided) 0,0000 0,1491 0,1137 0,1887 0,2233 0,0000 0,0000 0,0741

Notes: We compute the $M SE and $RM SE using the parameter estimatesin Table VI on both Sample A and Sample B. The Sample A numbers
for the six GARCH models are identical to those reported in Table VI. We aso report Sample A fits for three other models: First, the standard
Black-Scholes model with volatility estimated using nonlinear least squares minimizing $MSE. Second, the Practitioner Black-Scholes,
PBS(OLYS), from Dumas, Fleming and Whaley (1998), who regress implied volatility on a second order polynomial in strike price and time to
maturity. Third, PBS(NLS) which estimates the PBS polynomial using nonlinear least squares to minimize $MSE. We keep all parameters
constant across the 156 weeks in Sample A. We a so report the out-of-sample fits for the nine models in Sample B, using the parameter estimates
from Sample A. In Table V11.B we calculate the average of the weekly $RM SE across the 52 weeks in Sample B. Due to the concavity of the
square-root function, the average weekly $RM SEs are lower than the Sample $RM SE calculated over all the 52 weeks. We use the weekly

$RM SE sequences to test the significance of the difference in fits across models by applying the Diebold-Mariano (1995) test. The DM test is
implemented allowing for autocorrelation of up to four weeks in the $RM SE difference sequence. We take the Leverage GARCH model to be the
benchmark in the pairwise DM tests. The DM test has a standard normal distribution and we report the 2-sided P-values.



TableVIII.A: $RM SE on Sample A from NL S Estimates on Sample A. By Moneyness and Maturity

Simple M odél L everage M odel

DTM<60 60<DTM<180 180<DTM DTM<60 60<DTM<180 180<DTM
SIX<.94 0,9616 1,5246 2,2977 SX <.94 0,6470 0,9089 1,3186
94 < SX<.97 0,9841 1,5720 2,0373 94<S/X<.97 0,7692 0,9915 1,3204
.97 < S/X <1.00 0,9155 1,5963 1,9129 97 < S/X <1.00 0,8277 1,0415 1,3636
1.00< S/X <1.03 0,9991 1,8677 2,1563 1.00< S/X <1.03 0,8304 1,1628 1,3381
1.03< S/X < 1.06 1,2191 2,1494 1,7587 1.03< S/X <1.06 0,8701 1,2720 1,2241
1.06 < S/X 1,0448 1,8351 2,1288 1.06 < S/X 0,8033 1,1245 1,3125

News M odel Power Model

DTM<60 60<DTM<180 180<DTM DTM<60 60<DTM<180 180<DTM
SIX<.94 0,6531 0,9123 1,3120 SX <.94 0,6281 0,8915 1,2989
94 < SX <.97 0,7705 0,9917 1,3126 94<S/X<.97 0,7477 0,9878 1,3223
.97 <S/X <1.00 0,8236 1,0383 1,3575 97 < S/X <1.00 0,8174 1,0478 1,3682
1.00< S/X <1.03 0,8221 1,1579 1,3354 1.00< S/X <1.03 0,8329 1,1715 1,3419
1.03< S/X < 1.06 0,8635 1,2674 1,2168 1.03< S/X <1.06 0,8784 1,2642 1,2481
1.06 < S/X 0,8004 1,1218 1,3093 1.06 < S/X 0,8076 1,1059 1,3169

News& Power Model Box-Cox M odel

DTM<60 60<DTM<180 180<DTM DTM<60 60<DTM<180 180<DTM
SIX<.94 0,6322 0,9033 1,2228 SX <.94 0,6446 0,9095 1,3184
94 < SX<.97 0,7377 1,0099 1,2986 94<S/X<.97 0,7659 0,9951 1,3193
.97 < S/X <1.00 0,7993 1,0601 1,3427 97 < S/X <1.00 0,8254 1,0441 1,3629
1.00< S/X <1.03 0,7839 1,1573 1,3421 1.00< S/X <1.03 0,8303 1,1648 1,3343
1.03< S/X < 1.06 0,8193 1,1995 1,2692 1.03< S/X <1.06 0,8723 1,2716 1,2233
1.06 < S/X 0,7640 1,0129 1,3344 1.06 < S/X 0,8052 1,1233 1,3086

Notes: We report $RM SE from various GARCH options valuation models on Sample A, which denotes June 1, 1988 - May 31,
1991. The $RM SE is reported for three maturity bins and six moneyness bins. The parametersin the GARCH option valuation
models are estimated minimizing $M SE on Sample A itself.



TableVIII.B: $RM SE on Sample B from NL S Estimates on Sample A. By Moneyness and Maturity

SX <.94

94 < S/X <.97
97 < SX<1.00
1.00< S/X <1.03
1.03<S/X <1.06
1.06 < S/X

SX <.94

94 < S/X <.97
97<SX<1.00
1.00< S/X <1.03
1.03< S/X <1.06
1.06 < S/X

SX <.94

94 < S/X <.97
97 < S/X<1.00
1.00< S/X <1.03
1.03<S/X <1.06
1.06 < /X

Simple M odel

DTM<60 60<DTM<180 180<DTM
0,9970 1,9700 2,7700
1,1400 1,8800 1,8100
0,9930 1,3800 1,1200
0,5710 1,1200 1,3600
0,7550 1,4200 1,9200
0,9460 1,8200 2,3700

News M odel

DTM<60 60<DTM<180 180<DTM
0,5458 0,9376 1,3806
0,7941 1,1359 1,3354
0,8978 1,1883 1,1797
0,7395 0,9830 0,9948
0,6353 0,9657 0,9389
0,7979 1,0971 0,8786

News& Power Model
DTM<60 60<DTM<180 180<DTM

0,6792
0,9694
1,1400
0,9278
0,6577
0,7260

1,0682
1,3163
1,3925
1,1518
1,0184
0,9629

1,3759
1,4072
1,3475
1,1585
1,1197
1,0038

SX <.94

94 < S/X <.97
97 < SX<1.00
1.00< S/X <1.03
1.03< S/X <1.06
1.06 < S/X

SX <.94

94 < S/X <.97
97<S/X<1.00
1.00< S/X <1.03
1.03< S/X <1.06
1.06 < S/X

SX <.94

94 < S/X <.97
97<SX<1.00
1.00< S/X <1.03
1.03< S/X <1.06
1.06 < /X

L everage M odel

DTM<60 60<DTM<180 180<DTM
0,5350 0,9330 1,4000
0,7840 1,1300 1,3700
0,8880 1,1900 1,2000
0,7390 0,9870 1,0200
0,6400 0,9710 0,9520
0,8010 1,1000 0,8880

Power M odél

DTM<60 60<DTM<180 180<DTM
0,5498 0,9624 1,4468
0,8083 1,1729 1,4406
0,9241 1,2323 1,2659
0,7595 1,0090 1,1040
0,6327 0,9609 1,0110
0,7849 1,0523 0,9251

Box-Cox M odel

DTM<60 60<DTM<180 180<DTM

0,5411
0,7894
0,8941
0,7396
0,6373
0,7984

0,9414
1,1407
1,1947
0,9868
0,9654
1,0921

1,4098
1,3742
1,2105
1,0272
0,9583
0,8886

Notes: We report $RM SE from various GARCH options valuation models on Sample B, which denotes June 1, 1991 - May 31,
1992. The $RM SE isreported for three maturity bins and six moneyness bins. The parameters in the GARCH option valuation
models are estimated minimizing $M SE on Sample A, which denotes June 1, 1988 - May 31, 1991.



Table | X: Fit of Option Pricesfrom Weekly NL S Estimates on Sample B

A. Current Week
Simple Leverage News Power Power& News Box-Cox Black-Scholes PBS(OLS) PBS(NLS)

Sample $SRMSE 1,4639 0,4223 0,3963 0,3882 0,3802 0,4197 1,4859 0,9257 0,3557

B. OneWeek Ahead
Simple Leverage News Power Power& News Box-Cox Black-Scholes PBS(OLS) PBS(NLS)

Sample $SRMSE 1,5540 0,7081 0,7348 0,7135 0,7454 0,6978 1,5656 1,0952 0,6351

C. Comparing Weekly Predictive Accuracy with the L everage M odel

Simple Leverage News Power Power& News Box-Cox Black-Scholes PBS(OLS) PBS(NLS)
Mean Weekly $SRM SE 1,5295 0,5838 0,5980 0,6104 0,6558 0,5875 1,5429 0,8764 0,5395
DM Test Vaue 17,2292 1,5564 6,6388 1,9602 0,1746 20,5065 3,8026 -1,6054
P-Value (2-sided) 0,0000 0,1196 0,0000 0,0500 0,8614 0,0000 0,0001 0,1084

Notes. On every Wednesday in Sample B, we estimate a new set of GARCH parameters for each model based only on options data from that
particular day and returns from the past 250 days. We then report the Sample $RM SE for all the current Wednesdays (Current Week) as well
as the Sample $RM SE for the same Wednesdays using the previous Wednesdays GARCH estimates (One Week Ahead). We also report
Sample $RM SE for three other models: First, the standard Black-Scholes model with volatility estimated using nonlinear least squares
minimizing $M SE. Second, the Practitioner Black-Scholes, PBS(OL S), from Dumas, Fleming and Whaley (1998), who regressimplied
volatility on a second order polynomial in strike price and time to maturity. Third, PBS(NLS) which estimates the PBS polynomial using
nonlinear least squares to minimize $M SE. In these three models, the parameters are reestimated weekly aswell. In Table 1 X.C we calculate
the mean of the weekly $RM SE across the 52 weeks in Sample B. Due to the concavity of the square-root function, the average weekly

$RM SEs are lower than the Sample $RM SEs calculated over all the 52 weeks. We use the weekly $RM SE sequences to test the significance
of the difference in fits across models by applying the Diebold-Mariano (1995) test. The DM test is implemented allowing for autocorrel ation
of up to four weeks in the $RM SE difference sequence. We take the Leverage GARCH model to be the benchmark in the pairwise DM tests.
The DM test has a standard normal distribution and we report the 2-sided P-values.



Figure I: Stylized Innovation Functions, f(z). Various Models
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Notes: The innovation function from each model (solid line) is superimposed on the
symmetric squared innovation function from the Simple model (dashed line). The
innovation function conveys the impact on volatility from a particular standard
normal innovation, which is given on the horizontal axis.



Figure II: S&P 500 Returns Across Option Sample Period
Daily Log Returns on S&PS00
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Notes: The top panel shows the daily log returns on the S&P500 index. The data is shown
from June 1, 1988 through May 31, 1992. The vertical line delimits Sample A, which
corresponds to June 1, 1988 through May 31, 1991, from Sample B, which corresponds to
June 1, 1991 through May 31, 1992. The bottom panel shows the daily absolute returns
on the S&P500 index for the same periods.



Figure III: Average Implied Volatility of S&P 500 Index Options

025 m .

0.2F .

i

015 Sample A | Sample B .

1 1 1 1 1 1
20 40 G0 taill 100 120 140 160 180 200
Weak MNumber

Notes: On each Wednesday, we plot the simple average implied Black-Scholes volatility
across the S&P500 index option contracts observed at the close of trading. The average
implied volatilities are shown for each Wednesday from June 1, 1988 through May 31,
1992. The vertical line delimits Sample A, which corresponds to June 1, 1988 through
May 31, 1991, from Sample B, which corresponds to June 1, 1991 through May 31, 1992.



Figure IV.A: Model Price Less Black-Scholes Price. Various Models
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Notes: Each line shows the option price from a particular GARCH model less the Black-Scholes price of the same option.
Horizontal lines are plotted at zero. The horizontal axis denotes the current price of the underlying asset, and the strike
price is fixed at 100. The parameters of each GARCH model are set equal to the NLS estimates from Table VI. The initial
conditional variance in the GARCH model and the volatility in the Black-Scholes model are both set equal to the
unconditional value implied by the parameters in the GARCH model. The columns of plots correspond to 15, 60 and 180
days to maturity respectively. Each row of plots corresponds to a particular GARCH model.



Figure IV.B: Model Price Less Black-Scholes Price. Various Models (cont.)
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Horizontal lines are plotted at zero. The horizontal axis denotes the current price of the underlying asset, and the strike price is
fixed at 100. The parameters of each GARCH model are set equal to the NLS estimates from Table VI. The initial conditional
variance in the GARCH model and the volatility in the Black-Scholes model are both set equal to the unconditional value
implied by the parameters in the GARCH model. The columns of plots correspond to 15, 60 and 180 days to maturity
respectively. Each row of plots corresponds to a particular GARCH model.



Figure V: In and Out of Sample SRMSE. Weekly Estimates
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Notes: On every Wednesday in Sample B, we estimate a new set of GARCH
parameters for each model based only on options data from that particular day and
returns from the past 250 days. We then plot the SRMSE for the current
Wednesday (In-Sample) as well as the SRMSE for the same Wednesday using last
Wednesday's GARCH estimates (Out-of-Sample). The solid lines denote In-
Sample SRMSE for each model and the dashed lines denote Out-of-Sample

$RMSE.
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