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Alternative Models for Stock Price Dynamics

Mikhail Chernov’, A. Ronald Gallant*, Eric Ghysals®, George Tauchen™

Résumé/ Abstract

Nous examinons un ensemble de diffusions avec volatilité stochastique et de sauts afin de
modéliser la distribution des rendements d'actifs boursiers. Puisgue certains modéles sont non
emboités, nous utilisons la méthode EMM &fin d'éudier et de comparer le comportement des
différents modéles.

This paper evaluates the role of various volatility specifications, such as multiple stochastic
volatility (SV) factors and jump components, in appropriate modeling of equity return
distributions. We use estimation technology that facilitates non-nested model comparisons and
use a long data set which provides rich information about the conditional and unconditional
distribution of returns. We consider two broad families of models: (1) the multifactor loglinear
family, and (2) the affine-jump family. Both classes of models have attracted much attention in
the derivatives and econometrics literatures. There are various trade-offs in considering such
diverse specifications. If pure diffuson SV models are chosen over jump diffusions, it has
important implications for hedging strategies. If logaritmic models are chosen over affine ones,
it may seriously complicate option pricing. Comparing many different specifications of pure
diffusion multi-factor models and jump diffusion models, we find that (1) log linear models have
to be extented to 2 factors with feedback in the mean reverting factor, (2) affine models have to
have a jumps in returns, stochastic volatility and probably both. Models (1) and (2) are
observationally equivalent on the data set in hand. In either (1) or (2) the key is that the volatility
can move violently. As we obtain models with comparable empirical fit, one must make a choice
based on arguments other than statistical goodness of fit criteria. The considerations include
facility to price options, to hedge and parsimony. The affine specification with jumps in volatility
might therefore be preferred because of the closed-form derivatives prices.
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are our own. This paper subsumes part of the material presented in the working paper titled. “A New Class of

Stochastic Volatility Models with Jumps: Theory and Estimation.”
T Columbia Business School
T University of North Carolina

§ University of North Carolinaand CIRANO

** Duke University



Codes JEL : G13; C14, C52, C53
M ots clés : Processus de diffusions, processus Poisson, volatilité stochastique

Keywords: Efficient method of moments, Poisson jump processes, stochastic
volatility models



Introduction

Stochastic volatility (SV) models are specifically designed to capture salient properties of
volatility such as randomness and persistence. However, one of the most important recent
findings is that these models are not able to characterize all aspects of asset returns distri-
bution.! Indeed, given a reasonable fit to the conditional dynamics of volatility, SV models
cannot match the high conditional kurtosis of returns (tail thickness) documented for many
classes of financial assets, of which equities are the most prominent example.

This paper evaluates the role of various factors, such as additional volatility factors and
jumps, in appropriate modeling of equity returns. To do so we estimate a variety of extensions
of SV models using the same estimation technology with a common data set.

We are particularly interested in the role of SV factors and their functional form because
this issue has not been considered in the prior work as much as the role of jump components
has. Moreover, the evidence from option markets shows that adding a jump component
to returns is not sufficient to fully capture the dynamics of financial series. Bakshi, Cao
and Chen (1997) and Bates (2000) find that the volatility of volatility coefficient, which is
estimated from the underlying asset time series is much lower than the one estimated from
the options cross-section. In addition, Pan (2001) using simultaneously equity returns and
options prices finds evidence suggesting that the volatility of volatility is stochastic. This
observation is confirmed by Jones (2001) who finds, based on the implied volatility series,
that volatility of volatility is higher during the more volatile periods in the stock market.

This evidence suggests that an appropriate extension might involve two SV factors, thus
breaking the link between tail thickness and volatility persistence. Depending on model
specification — affine or logarithmic — a second SV factor may act as either a factor dedicated
to exclusive modeling of tail behavior (the first factor is then often referred to as a long
memory component), or as a stochastic volatility of volatility factor. In the latter specifica-
tion, the volatility would be capable of making rapid moves, which is prohibited by a single
SV specification. EJP propose to model the same feature by introducing a jump component
to the SV factor.

There are various trade-offs in considering these different specifications. If pure diffusion
models are chosen over jump diffusions, it has important implications for hedging strategies.

If logarithmic models are chosen over affine ones, it may seriously complicate option pricing.

!Formal statistical diagnostics and rejections of SV models are reported in Andersen, Benzoni, and Lund
(2001) (ABL hereafter), Chernov and Ghysels (2000), Eraker, Johannes, and Polson (2001) (EJP hereafter),
Jones (2001), and Pan (2001).



Finally, if we obtain models with comparable empirical fit, we would still have to make a
choice based on arguments other than statistical goodness of fit criteria. Such arguments
could be facility to price options, to hedge, or simply parsimony. Our approach allows us to
address all these issues.

As is well known, the risk-neutral measure used in derivatives valuation has to be the same
as the physical one except for drift, the models of equities will retain the same factor structure
under both probability measures. Therefore, despite the fact that we are not using options
data in the present paper, we motivate our work by empirical results from both underlying
and options literature. By the same token, our results will have implications for both. We
estimate a total of ten different models, broadly classified as either affine or logarithmic.
The benchmark for each class is a single SV model, i.e. the Heston (1993) model for affine
class, and the Scott (1987) model for the logarithmic class. In the affine class the model is
extended by considering two SV factors, a jump to returns (ABL), and a simultaneous jump
to both returns and volatility (EJP). In the logarithmic class the extensions are achieved
by adding a second SV factor, and by considering models with feedback (Gallant, Hsu, and
Tauchen, 1999).

We consider a long data set, providing rich information about the conditional and un-
conditional distribution of returns under the objective probability measure. The common
dataset consists of returns on the Dow Jones Industrial Average (DJIA) index from January
1953 to July 1999, covering in addition to the market crash of October 1987, the more re-
cent crashes of October 1997 and August 1998, as well as historical events such the Cuban
Missile Crisis in October 1962, or Arab Oil Embargo in October 1973. The long dataset also
offers more variety in the dynamics of volatility, which allows the determination of a more
robust model. These are the longest series considered for such a study: corresponding to
the combination of ABL, and EJP, who study 1953 to 1996 and 1980 to 1999 respectively.
Though these authors use the S&P 500 index, our results should be qualitatively comparable
because historically DJIA closely tracks the S&P 500 index.

The common estimation method is the Efficient Method of Moments (EMM) of Gallant
and Tauchen (1996). The advantages of using EMM, critical for comparison of several
models, are that it offers: (1) formal statistical tests of a model fit, (2) formal diagnostics of
model inadequacies and most importantly (3) non-nested specifications can be compared in a
meaningful way since EMM forces all models to confront the same set of moment conditions.

The paper is organized as follows. In a first section we describe the models that we

consider in the study. The next section covers the estimation methods, briefly summarizing



EMM procedure and the SNP model selection. Section three reports the empirical results.

A final section concludes the paper.

1 Models Specifications

In this section we describe the various classes of models we consider in our study, starting
with single index volatility diffusion models in a first subsection. Special cases include affine
models, CEV and logarithmic models. In the second subsection we discuss jump-diffusion
models. In the third and final subsection we introduce a unified notation for the different

models.

1.1 Single Index Volatility Diffusion Models

The starting point is the multi-factor pure diffusion SV model. We consider models with at

most four factors, namely:

dP,/P; = (oqo+ aioUs) dt + o (Bro + P13Use + B1aUst) (Y11dWig + ¢13dWsp + 9p14dWy) (1)
dUsy = (a0 + aaUsz) dt + PagdWay (2)

AUy = (aio + iUy dt + (Bio + BiaUst) " dWy, i = 3,4 (3)

In the above, P, represents the financial price series evolving in continuous time (we reserve
the notation Uy, for the logarithm of the price).

We allow for a flexible drift specification via a stochastic factor Usy;, which evolves accord-
ing to an Ornstein-Uhlenbeck process. This specification can accommodate the mild serial
correlation appearing in the returns series, which may be explained by the nonsynchronous
trading and unexpected stochastic dividend effects. An alternative strategy to incorporate
these effects would be to prefilter the data as was done in ABL or Gallant, Rossi, and
Tauchen (1993).

We model the diffusion factor o(.) as a function of the linear combination of the two
stochastic volatility factors Us; and Uy;. The use of a functional transformation of linear com-
bination of factors is reminiscent of index models used in various areas of econometrics.? We

can, therefore, refer to the volatility models as single index volatility (SIV) models. Different

2For cross-sectional applications see for instance Powell, Stock and Stoker (1989) and Stoker (1993), for
time series applications in finance see Ghysels and Ng (1998) for the estimation of term structure models

and Ait-Sahalia and Brandt (2001) for portfolio weights.
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specifications of the index function will yield various classes of SV models, including affine
and logarithmic two volatility factor models. Finally, we parameterize 1), = /1 — 123 — 3,
so that 113 and 114 are correlation coefficients that reflect leverage effects.

The classical models of Heston (1993) and Scott (1987) are obtained when Uy, and Uy
are switched off. These models proved to be a substantial improvement over the Black and
Scholes (1973) specification because of their formulation of volatility as a random persistent
process. However, this persistence turned out to be the weakness of the model as well:
extreme movements in returns occur more frequently in the observed data than would be
implied by the Heston or Scott model calibrated to the data (see, for instance, ABL). These
observations prompt us to explore generalizing the Heston and Scott models to better ac-
commodate the data. In particular, we introduce a second stochastic volatility factor. The
presence of two volatility factor breaks the aforementioned linkage between tail thickness
and volatility persistence.

We have to note that the list of the models considered is by no means exhaustive. For
example, Meddahi (2001) proposes to model the diffusion coefficient as a finite order expan-
sion based on the eigenfunctions of the expectations of the state variables. In our notation
his model can be represented as:

0® (Us, Uy) = Y aijBs; (Us) Eaj (Un) (4)

0<i,5<p

where p is the order of expansion. The advantage of such a specification is that it nests all the
models we consider here and offers more flexibility in modeling the diffusion term. However,
as is often the case with nonparametric specifications, the intuition behind the specification is
lost because of the higher order expansions. The goal of this paper is to compare intuitive and
commonly used specifications, therefore we leave nonparametric flexible form alternatives for
future research. In the next subsections we consider (1) affine, (2) CEV and (3) logarithmic

models, all particular cases of index volatility models.

1.1.1 Affine Models

Affine diffusion models are characterized by linearity of the drift and variance functions.
Dai and Singleton (2000) discuss the most general specification of such models including the
identification and admissibility conditions. We consider a very simple representative of this

class by specializing the SIV specification in (1)-(3) to:

o(u) = Vu (5)
v, = 0.5, i=34 (6)



The volatility factors enter additively into the diffusion component specification, as in Engle
and Lee (1999). Hence, they could be interpreted as short and long memory components.
The long memory (persistent) component should be responsible for the main part of the
returns distribution, while the short memory component will accommodate the extreme

observations.

1.1.2 CEV Models

The SIV model specializes to the constant elasticity of variance (CEV) class when the volatil-
ity function of the affine models (5), is modified to allow +; in the range from 0.5 to 1. As
extreme cases, the class contains the affine models, when ~; = 0.5, and the GARCH diffusion
models (Nelson, 1990), when v; = 1. We do not provide a detailed discussion of the CEV
models in this paper because our fit was very close to affine models, and, therefore, did not
provide many new insights. Jones (2001) has success with these models, when allowing for
volatility induced stationarity (vy; > 1) and confronting it with the joint options and the

underlying index dataset.

1.1.3 Logarithmic Models

In logarithmic models, the variance is an exponential function of the factors. We consider
the following specializations of SIV (1)-(3):

o (u) = exp (u) (7)

We study two different flavors of the logarithmic models, depending on the value of the
coefficients ;.

When v; = 0, 72 = 3, 4 the volatility factors are described by Ornstein-Uhlenbeck processes.
In this case, the drift and variance of the volatility factors are linear functions. Hence, this
is a multi-factor generalization of the Scott (1987), also known as log-linear, specification.?
When v; = 1, i = 3,4 we have volatility feedback, a feature which will turn out to be
empirically relevant. The key property of interest is that it permits the volatilities of the
volatility factors, via the terms (33U3 and/or 844Uy, to be high when the volatility factors
themselves are high. These terms are found to be important in Gallant, Hsu, and Tauchen
(1999).

3We are not the first to suggest two-factor log-linear SV models, see for instance Alizadeh et al. (2002),
Chacko and Viceira (1999), Gallant, Hsu and Tauchen (1999) and the two-factor GARCH model of Engle
and Lee (1999).




The logarithmic models with feedback violate the standard regularity conditions. There-
fore, the stochastic integrals and solutions of the SDEs associated with these models are
not defined. To remedy this problem one can splice the exponential volatility function in
(7) with, essentially, the linear growth condition at the level of volatility so high that it is
unlikely to be observed in the U.S. equity index returns. Figure 6 compares the exponential
function in (7) and the actual specification that we use. All the details are relegated to
Appendix A.

The model with feedback also has a different volatility domain. As opposed to the affine
and log-linear models, where o(u) ranges between zero and infinity, this model has a lower
bound equal to exp(Big — B13530/ B33 — BraBuo/Bua).* While there is no a-priori consideration
against this on pure modeling ground — after all volatility never reaches zero in practice
— the fact that volatility boundary depends on the parameters may lead to non-standard
asymptotic behavior of estimators. Method of moment estimators are less prone to boundary
problems than are maximum likelihood estimators.> Nonetheless, we strongly suspect that
the densities are smooth enough at the boundary so that the parameter estimates follow the
usual v/ N-asymptotics; however, we have been unable to prove this. An alternative strategy
to address the boundary issue is to subtract the lower bound from the volatility specification
in (7) as this would ensure that the lower bound is equal to zero. However, our estimation
results showed that this specification is dominated by the one we consider here in terms of
overall fit.

It is perhaps not so surprising that the feedback model has good empirical properties.
Intuitively, the second factor not only takes care of the tail behavior, as the jump process
does, it also features dynamics that seem appealing for modeling extreme market conditions.
Indeed, the process can accommodate (mild) persistence in volatility during high volatility
days, and when 44 # 0 (assuming the second factor determines tail behavior), the volatility
of volatility increases as well. These properties cannot be accomplished by a simple Poisson
jump process, which can accommodate tail behavior but not the dynamics of extreme events.
It should also be noted that a nice feature of the logarithmic specification is the multiplicative
effect of Uz, and Uy on the volatility of returns. Neither affine models nor jump processes
feature separate factors which scale multiplicatively the Brownian motion Wi;. Also, the
ability of the exponential function to generate very high volatility values adds additional

capability to model market stress. All these properties of logarithmic models facilitate

“When 7; = 1, the volatility factors are equal to GARCH diffusion model shifted by SB;0/8:i. Since the

domain of GARCH diffusion is [0, c0), the domain of our volatility factors is [—Bi0/Bii, 00).
SFor further discussion of ML estimation with boundary parameters, see e.g. van der Vaart (2000).



mimicking the short-lived but erratic extreme behavior through the second volatility factor.

1.2 Affine Jump Diffusion Models

As will be seen from empirical results, the log-linear models dominate the pure affine diffusion
models and are not rejected by statistical tests. We would like to give affine models a fair
chance and consider extensions of the Heston SV model via jump components.

As a benchmark, we will consider a constant intensity jump diffusion model. Namely the

SV model is augmented by the jump to returns, Uy, specified as:

qut = Jl,thta where (8)
N, ~ Poi(\y) (9)
Jip ~ N(ws,o03) (10)

which is added to the affine version of (1) when Uy, = 0. ABL constrain p; to be equal to
zero. We estimate both constrained and unconstrained specifications.

EJP consider a jump to the volatility factor Us; as well, namely:

dq;;’t = J37tht, where (].].)
Jsi ~ Exp(9) (12)

This specification means that jumps to returns and volatility are driven by the same Poisson
process Ny, i.e. jumps occur at the same time. Such a specification allows the introduction
of correlation between jump sizes: the jump to return specification (10) should be replaced
by

Jig~ Ny + 5ty 05) (13)

EJP find this model to be the most successful affine specification in terms of the residual

properties and the shape of implied volatilities smile.

1.3 Normalizations and Model Abbreviations

Some normalizations are needed to achieve identification of the various specifications de-
scribed in the previous subsection. In the SIV specification (1)-(2) the long-run mean of the
drift is simultaneously controlled by a9 and «sg, while the volatility of the drift volatility is

controlled by aqo and [yy. Therefore, we impose:

ap = 0, 520 =1 (14)



By analogy, for the general affine model in (3), (5) and (6) we impose the restrictions:

Bro=0,830=0,033 =1,840 =0, 844 = 1 (15)

Finally, for the logarithmic specification (3) and (7) we set
30 = 0,40 =0, B30 = 1, fao = 1 (16)

Note, that (1o is not equal to zero here, because it controls the long-run mean of the total
volatility.

It proves convenient to have acronyms for the various models:
AFF1V means the simplest AFFine One Volatility factor model appearing in (1)-(3), (5),
and (6). This model with constant drift corresponds to the Heston (1993) model.
AFF2V stands for the AFFine Two Volatility factor model, i.e. the most general model
appearing in (1)-(3), (5), and (6). This model augments the previous one with an additional
continuous path factor.
AFF1V-JO represents the simplest AFFine One Volatility factor model with Jumps to
returns appearing in (1)-(3), (5), and (6) in combination with the Poisson process as specified
in (8)-(10) and mean jump size, s, constrained to be equal to 0. This is the ABL model.
AFF1V-J is the AFFine One Volatility factor model with Jumps to returns appearing in
(1)-(3), (5), and (6) in combination with the Poisson process as specified in (8)-(10).
AFF1V-JJ is AFFine One Volatility factor model appearing in (1)-(3), (5), and (6) with
the Poisson process specified in (9) driving both Jumps to volatility in (11) and (12) and
Jumps to returns in (8) and (13). This is the model introduced in Duffie, Pan, and Singleton
(2000) and estimated by EJP.
LL1V means the simplest Log Linear One Volatility factor model with no volatility feed-
back. This model with constant drift corresponds to the Scott (1987) model.
LL1VF means the One Volatility factor version of (1)-(3), (7), and v; = 1, i = 3,4 with
Feedback where ;4 = 0 making the second volatility factor irrelevant.
LL2V is the model (1)-(3), (7), and 7; = 0, i = 3,4 meaning Log Linear, Two Volatility
Factors without volatility feedback.
LL2VTI is the model meaning Log Linear, Two Volatility Factors — the Intermediate case —
one without volatility feedback and the other one with the feedback, i.e. v3 =0 and vy, = 1.
LL2VF is the most general model, where the acronym means Log Linear, Two Volatility
Factors, which feature Feedback via (33 # 0 and (44 # 0 from the volatility factors to their
own volatilities. This is the Gallant, Hsu, and Tauchen (1999) model.



The various models are summarized in Table 1. In what follows, p denotes the parameters
of the underlying SDE that is to be estimated. For example, for the largest logarithmic

specification LL2VF the parameter vector is

pP= (a10, (12, (22, (33, Qlag, o, B3, Bia, B33, Baa, 1/)13, 1/)14) (17)

2 Efficient Method of Moments

Let {y:}° ., yr € RM, be a discrete stationary time series. In this paper, {y;} is
100 x [log(P;) — log(P;_1)], where P, is the daily DJIA. When, as here, {y;} comes from
a discretely sampled SDE system, then the SDE specification implicitly determines the den-
sity p(y¢—1,--.,y|p) of a contiguous stretch of length L 4+ 1 from {y;}, where p € R?» is a
vector of unknown parameters of the generic diffusion process (1). The fundamental problem
that blocks straightforward application of standard statistical methods is that an analytic
expression for p(y;_r,...,yo|p) is not available. (see for instance Ait-Sahalia, 2002; Elerian et
al., 2001, Durham and Gallant, 2000 for further discussion). However, by using simulation,

an expectation of the form

gp(g) = / : '/g(y—Lv'"7y0)p(y—La---,y0|p) dy_L"'dyO

can be computed for given p. That is, for given p, one can generate a simulation {g;}¥, from

the system and put
LS
= X7 g yt Ly---»Y )7
N =

with N large enough that Monte Carlo error is negligible.

Gallant and Tauchen (1996) propose a minimum chi-squared estimator for p in this situa-
tion, which they termed the efficient method of moments (EMM) estimator. Being minimum
chi-squared, the optimized chi-square criterion can be used to test system adequacy. The
moment equations that enter the minimum chi-squared criterion of the EMM estimator are
obtained from the score vector (0/00)log f(yi|xi—1,0) of an auxiliary model f(y;|x;—1,0)
where z;_; is a lagged state vector. The auxiliary model is termed the score generator.
Gallant and Long (1997) show that if the score generator is the SNP density fx(y|z,0k)
described below, then the efficiency of the EMM estimator can be made as close to that of
maximum likelihood as desired by taking K large enough. The first step in computing the

EMM estimator p, is to use the score generator
f(yt|xt,1, 9) 0 € © (18)
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to summarize the data {7, Z; 1}}_, by computing the quasi maximum likelihood estimate

0, = argmax— Zlog (9 Ze—1, 0],
geo Ty

and the corresponding estimate of the information matrix

= “r 0 =10 Y
In ! Z{ae IOg f(yt|l't 1 )] [% lOg f(gtu't—l; gn)] ) (19)

n

The estimator (19) presumes the score generator (18) provides an adequate statistical approx-
imation to the transition density of the data, so that {(8/00) log f(3:|#:_1,0,)} is essentially
serially uncorrelated. If (18) is not adequate, then one of the more complicated expressions
for Z,, set forth in Gallant and Tauchen (1996) must be used, although the EMM estimator

is still consistent and asymptotically normal. Define

o) = & { 1081 ko0

which is computed by averaging over a long simulation

1 N
p,0) = Nz; f(@el2e-1,0)]. (20)
The EMM estimator is
pn = argminm' (p, 0,)(Z,) "' m(p, 0y,) (21)
pERPP

The estimator is consistent and asymptotically normally distributed with asymptotic dis-
tribution given in Gallant and Tauchen (1996). Under the null hypothesis that p(y_r, ..., %o|p)
is the correct model, n times the minimized value of the objective function is asymptotically
chi-squared on py — p, degrees of freedom where py and p, are respectively the lengths of
parameter vectors f and p.

The EMM estimation involves simulating continuous path diffusions which has been
covered extensively in the literature. We rely on a standard Euler discretization scheme.
The simulations involve a sampling frequency with twenty four steps per trading day. The
trading day was set equal to 1/252, therefore the models parameters have annual scaling.

We use a nonstandard approach to simulate the affine diffusions from (1)-(3), (5), and
(6).5 Instead of a naive discretization of Uy, and Uy, we first derive the dynamics of log Us;
and log Uy, using the 1t0’s lemma. Then we apply the Euler scheme to these processes. As is

well known, square-root processes require constraints on the coefficients for the processes to

6We are greatful to Michael Johannes for suggesting this.

11



stay positive (e.g. Feller, 1951). Given our normalizations in (15), these constraints translate
into a;p > 0.5 for ¢ = 3, 4. If we directly simulate the affine processes these constraints impose
numerical burdens, as it becomes hard to take numerical derivatives and even simulate for
the borderline cases. When we simulate the log-versions of Uz, and Uy, we are not concerned
with the positivity of the processes, so we can let the parameters a;y change freely. This
manipulation improves the stability of the procedure tremendously. Therefore , although
affine diffusions satisfy the standard regularity conditions, we might expect, on this basis,
that simulating the log provides some increase in numerical accuracy. This approach is
related to the Doss transformation which improves the speed of convergence of simulation-
based estimates (Detemple, Garcia, and Rindisbacher, 2002).

We took the following approach with respect to jump component simulation. We opted
a profiling approach, where the EMM objective function is optimized with respect to the
parameters p appearing in (17) and the jump size parameters. Since we focus on a standard
Merton type jump process the size distribution is Gaussian and involves two parameters.
The jump frequency is drawn from a Poisson process, with its intensity parameter fixed and
moved over a grid to appraise the overall fit of the model. The jump process was implemented
by drawing durations between jumps from a exponential distribution. When the durations
fell inside the discretization interval, the size of the jump was attributed time-proportionally
to the hourly observations bracketing the jump event. In practice this scheme is equivalent
to the one in Platen and Rebolledo (1985) and hence achieves the same convergence.

The best choice of a moment function to implement simulated method of moments is the
score of a auxiliary model that closely approximates the system dynamics where the parame-
ter vector of the auxiliary model is evaluated at its quasi maximum likelihood estimate. The
SNP density of Gallant and Tauchen (1989, 1991, 2000), which is derived as a location-scale
transform of an innovation density represented as a Hermite expansion leads to a useful,
general purpose auxiliary model. We give a brief description. Here, 1, represents the ob-
served process and, for now, z; | = (y; 1, ..., Yr_1). We frequently drop the time subscripts
and write y and = generically.

If one expands /p(z,y]|p°) in a Hermite series, that is, expands the square root of the
stationary density of the system (1) in a Hermite series, and derives the approximation to
the transition density p(y |z, p°) of the system that corresponds to the truncated expansion,
then one obtains an approximating transition density fx(y:|z; 1) that has the form of a
location-scale transform

y=Ryz+ s (22)
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of an innovation z;, where R, is an upper triangular matrix (see Gallant, Hsieh, and Tauchen,

1997).” The density function of the innovation z, is

Pea)Pe(:)
heE ) = Tt DR du

(23)

where P(z,x) is a polynomial in (z, z) of degree K and ¢(z) denotes the multivariate normal
density function with dimension M, mean vector zero, and variance-covariance matrix the
identity.

It proves convenient to express the polynomial P(z, z) in a rectangular expansion

P(z,z) = i (§ aija:i) 2 (24)
41=0 \li|=0
where K = (K,,K;), i and j are multi-indexes, and | - | denotes the degree of an index.
Because [P(z,2)]?/ [[P(u,z)]?¢(u)du is a homogeneous function of the coefficients of the
polynomial P(z, z), P(z,x) can only be determined to within a scalar multiple. To achieve
a unique representation, the constant term agy of the polynomial P(z, x) is put to one. With
this normalization, hx (z|x) has the interpretation of a series expansion whose leading term
is the normal density ¢(z) and whose higher order terms induce departures from normality.

The advantage of a rectangular expansion is that it gives the polynomial P(z,x) the
interpretation of a polynomial in z of degree K, whose coefficients are polynomials of degree
K, in z. This is useful in applications because putting K, = 0 implies that the innovation
density hy(z|z,—1) does not depend on x;_; and is therefore homogeneous. That is, if
K, = 0 none of the moments of the innovation density A (z|z;—1) will depend on the past.
Conversely, if K, > 0, then the shape of the innovation distribution does depend on the
history ;1 = (Y41, - -, y1—1) of the process {y;}?° _ . In the empirical application we will
compare parameter estimates obtained from homogeneous heterogeneous score specifications
for certain model specifications.

The location function takes the form of an autoregression p, = by + Eﬁ;l Byy;_j.. Conse-
quently, the density determined by the location-scale transform y = Rz + pu, together with
the innovation density hg(z|z) is a Gaussian vector autoregression if K, = K, = 0. It
is a semi-parametric autoregression along the lines of Engle and Gonzales-Rivera (1991) if

K, >0 and K, = 0, and is a fully nonparametric nonlinear process if K, > 0 and K, > 0.

"Although R does not depend on x in this derivation, it proves advantageous in applications to allow
the scale matrix R, to depend on x because it reduces the degree K, required to achieve an adequate

approximation to the transition density p(y|z, p°).
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The two choices of R, that have given good results in applications are an ARCH-like moving
average specification and a GARCH-like ARMA specification which are discussed in Gallant
and Tauchen (1997). In summary, L,, L

tion y = R,z + j, and hence determine the nature of the leading term of the expansion.

¢> and L, determine the location-scale transforma-
The number of lags in the location function pu, is L, and the number of lags in the scale
function R, is L, + L,. The number of lags that go into the = part of the polynomial P(z, z)
is L,. The parameters K,, K, determine the degree of P(z,x) and hence the nature of the

innovation process {z;}.

3 Empirical Findings

In a first subsection we cover the estimation of the auxiliary model. The second subsection
reports and discusses the estimates. A final subsection discusses reprojection of the factors

and their properties.

3.1 Data and Auxiliary Model

The raw data for analysis consist of 11,717 daily observations January 2, 1953, to July 16,

1999, on the (geometric) percent movement
Y = 100 x [log(P;) — log(P;_1)] (25)

of the Dow Jones Industrial Average (DJIA), P,. As noted earlier, we use the raw series and
do not perform any transformation on the raw data which are plotted in Figure 1. The first
step is to project the data {y;} onto an auxiliary model, which is the SNP model described
above. We reserve the first 47 data points for forming lags leaving 11,670 observations, net.
The tuning parameters L,,, Ly, L,, L,, K,, and K, are selected by moving upward along an

expansion path using the BIC criterion,

BIC = s,(0) + (1/2) (pxc /n) log(n),

where the objective function s,(#) is given by

ul0) = —+ > logl i (7l 1,0)

t=1

to guide the search. Models with small values of BIC are preferred.
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The expansion path has a tree structure. Rather than examining the full tree, the strategy
is to expand first in L, with L, = L, = L, = K, = K, = 0 until BIC turns upward. For
ARCH-type specifications, we expand L, with L, = L, = K, = K, = 0, then expand K,
with K, = 0, and lastly L, and K,. It is useful to expand in K,, L, and K, at a few
intermediate values of L, because it sometimes happens that the smallest value of BIC lies
elsewhere within the tree. For GARCH-type specifications, the strategy is similar: we put
L, = L, =1, then expand K,, L, and K, as above. We then check L, = L, = 2. These
two are the only GARCH-type specifications considered, which is consistent with standard
practice among GARCH practitioners. There is the difficulty that increases in K, add a
plethora of parameters. We control this by restricting the coefficients a;; of the Hermite
expansion (24) to be zero when [j| > 2 and |i| > 1, which was motivated by inspecting
t-statistics on Hermite coefficients of larger models without such restrictions. The net effect
of the restrictions is that the Hermite coefficients of (24) are state dependent, i.e, dependent
upon z, only up through quadratic terms; the Hermite coefficients of z; are constant for
cubics and higher.

The final SNP model selected via this procedure has
L,=1,L,=1,L,=1,L,=1,K,=8 K, =1 (26)

This SNP model, preferred under BIC, can be characterized as a GARCH(1,1) with a non-
parametric error density represented as an eighth-degree Hermite expansion where the Her-
mite coefficients up through quadratic terms are state dependent. The model is akin to
the semiparametric GARCH of Engle and Gonzales-Rivera (1991), except their nonpara-
metric error density is represented as a state-independent kernel density. Unlike SNP, the
kernel representation of the semiparametric GARCH precludes state dependence of the error
density, which is found to be empirically important for this data set.

We generate starting values for the optimization by first estimating the models based on
a homogeneous score where the state dependence of the Hermite polynomial is not incorpo-

rated, namely the tuning parameters are set to:
L,=1L,=1L,=1,L,=1,K,=8K,=0 (27)

We use the EMM package capability to process a sequence of input parameter files with many
randomly perturbed starting values from each input file and, therefore, bad starting values
leading to local optima are not a concern. This strategy yielded satisfactory fits sometime

substantially improving results of previous work.
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3.2 Estimation results

Table 1 shows the various model specifications along with the minimized value of the EMM
objective function appearing in (21), scaled to follow an asymptotic chi-squared on py — p,
degrees of freedom. Tables 3 and 4 report parameter estimates of the affine and logarithmic
models respectively. The parameters correspond to returns expressed in decimal form on
a yearly basis. The models diagnostics via t—ratios of individual SNP score elements are
provided in Table 5. We start the discussion with the benchmark case of single factor SV

models, and then analyze various extensions.

3.2.1 Benchmark case: Single factor SV models

It is not surprising that all three single factor SV specifications, AFF1V, LL1V, and
LL1VF, are rejected. The t—ratios indicate that because of the misspecification the mod-
els can match only some aspects of the returns distribution exemplified by components of
the SNP score. All of these models seem to capture the tails of the distribution foregoing
matching more intuitively appealing GARCH components. The AFF1V model is the most
dramatic example: its speed of mean reversion, asz is about 28 times larger than that of
logarithmic models, which indicates highly erratic behavior capable of generating extreme
tails, but missing the main bulk of the returns distribution.

In fact, the estimated ass is about 40 times larger than the speed coefficient in affine
models estimated by ABL and EJP. In order to understand this puzzling result better, we
evaluate the AFF1V estimation results based on the homogeneous score 11118000 appearing
in (27). This score mitigates the influence of the tails, and, therefore, a misspecified model
should be able to match the GARCH components of the score better.

Table 2 reports the parameter estimates of AFF1V based on the homogeneous score
11118000. The most interesting feature in Table 2 is that it offers two sets of parameters
for one model. The parameter estimates differ particularly with respect to as; measuring
the speed of mean reversion in the volatility process. The intuitive fit yields estimates with
slow mean reversion, i.e. as3 equals —3.39 which conforms to the usual empirical findings.
However, the intuitive fit turns out to be a local minimum of the EMM objective function
equal to 31.815, as there is a better fit, which we refer to as the best with a lower x? of 17.886

and, unlike previous findings, with very fast mean reversion.® Panel B of Table 2 shows the

8The better fit was discovered with the help of the heterogenous score, but theoretically it can be found

via meticulous grid search of the starting values, so the heterogeneous score is not required for this.
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EMM t—ratio diagnostics. We learn that the intuitive fit violates the moment conditions
associated with Hermite polynomial coefficients fitting the tail behavior, whereas the best fit
fails at mimicking the GARCH volatility persistence moment conditions.

This evidence indicates that there is a dilemma in accommodating at the same time
volatility persistence and tail behavior via a single SV factor.” The AFF1V model combined
with the homogenous score can put emphasis either on the persistence in the volatility or the
tail behavior whereas the heterogeneous score restricts the one factor model to emphasizing

the tail behavior only.

3.2.2 Diffusion extensions: Multiple SV Models

The second SV factor in AFF2V leads to a tremendous improvement in capturing the
returns dynamics. The t—ratios indicate that the model does a good job with the tails and
significantly improves the fit for the GARCH components of the score. It is clear that for
this specification one SV factor, Us, is working on the main part of the distribution (notice
that its persistence is much higher than that of the AFF1V model) and another factor,
Uy, is matching the tails. The relative success of this model is evident in the dramatic
decrease of the objective function value from 20.196 for AFF1V to 13.668. However, the
speed of mean reversion of the persistent factor Us is still very high, which indicates potential
misspecification of the model. Moreover, the loss of degrees of freedom associated with the
increase in the number of parameters is not compensated by the decrease in the objective
function value. The p—values for the two affine models are roughly the same and therefore
AFF2V is rejected as well.

Note that while single factor models are known to have negative correlation between
innovations in volatility and returns, this is not the case for the two-factor model. The
models have been parameterized so that the coefficients 113 and 114 come out as correlations.
We find in Table 3 a correlation in AFF1V equal to -0.19, the correlations of returns with
U; and U, are equal to -0.41 and 0.90 respectively. These estimates are comparable to those
found in the literature.

The second factor in logarithmic models leads to improvements as well. However, since
it enters the model multiplicatively, Uy will work as stochastic volatility of volatility rather
than the factor dedicated to the tails of distribution. The LL2V is the least successful
specification. Despite its p—value of 2% being higher than those of all pure diffusive affine

9Meddahi (2001) gives an excellent theoretical discussion of this issue in the framework of the discrete-time

LL1V model.
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models and all single factor logarithmic models, it is still quite low for the model to be
retained as an adequate model. In particular, when one examines the t—ratio diagnostics,
they show only marginal improvements over single factor models. Moreover, some of the key
model parameters related to the more persistent factor Us (o33, f13, and 1)13) are insignificant.

The LL2VF specification, which adds feedback to the LL2V specification, dominates all
diffusion models based on t—ratios, p—values, and objective function values. The estimated
parameters clearly indicate extreme persistence, i.e. near unit root discretely sampled, of Uz
and extreme mean reversion, i.e. near white noise discretely sampled, of Uy,. Interestingly, the
point estimates of the leverage effect coefficients )13 and 14 are -0.34 and -0.28 respectively.
Hence, they are both negative and significant with a somewhat stronger effect in the more
persistent factor. The value of 14 is quite a dramatic reversal as compared to AFF2V.
This is additional evidence that affine and logarithmic specifications work in fundamentally
different ways.

Evaluating LL2VF more carefully, one observes that (333, the coefficient controlling the
feedback component of Uj is not significantly different from zero. The factor’s persistence
parameter, asg, is not significant either. Our last logarithmic specification LL2VT explores
the possibility of modeling the persistent factor Us without feedback. We find that, despite
an increase in the objective function, additional degree of freedom leads to p—value very close
to that of LL2VF. Moreover, all nice t—ratio diagnostics remain intact and asz3 becomes
significant. These results suggest that the introduction of feedback to both SV factors is

unnecessary, and LL2VT becomes our preferred logarithmic model.

3.2.3 Jump extensions

Our findings indicate that logarithmic diffusion models overwhelmingly dominate the affine
diffusion models mainly because of the multiplicative specification of the volatility. However,
we would like to investigate the role of jumps in affine models since they were shown to be
important by several authors. This analysis will lead to a fair comparison between affine
and logarithmic models.

The first specification, AFF1V-J0, offers a somewhat modest improvement in the EMM
objective function value as compared to AFF1V. Moreover, because of the loss of one degree
of freedom the p—value is slightly worse. Turning to the t—ratios we see a mild improvement
in the GARCH components of the score. However, looking at the parameter estimates,
it becomes clear that the diffusion part of the model becomes much more reasonable. In

particular, the persistence of Us increases 24-fold. This is not surprising: incorporating
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jumps provides additional flexibility in fitting the tails of the returns distribution, relieving
the volatility factor from this burden. Therefore, the volatility process coefficients are much
more closely aligned with the intuitive fit in Table 2.

ABL, who study the specification of type (1) find that jump occur about six times per
year and on average jump up and down by the same magnitude. Clearly, jump component
is fitting the tail behavior. A-priori, it seems that a second SV factor can perform the same
task. Our results confirm this intuition: AFF2V does even a better job than AFF1V-J0.

The jumps in AFF1V-JO are symmetric (because p; was set to zero) and occur 5.6
times per year. Casual observation of the return series in Figure 1 indicates that this is not
the case: there seem to be more negative than positive jumps, and they seem to occur less
frequently. One way to formally test this is to estimate u; as a free parameter. AFF1V-
J shows a very different picture: the frequency of jumps drops to 1.7 per year and the
jump size has a significant negative mean, which is consistent with negative skewness of
returns. The volatility component becomes even more persistent. The improvement occurs
not only in realism of the parameters estimates, but in statistic inference as well: ¢t—ratios
substantially improve and the model cannot be rejected at 5% confidence level, but is rejected
at 10/Moreover, the properties of the jump-diffusion model become intuitive: volatility is
more persistent, jumps are seldom: a little bit less than two per year.

The AFF1V-JJ model has an appealing feature that during market stress, when returns
jump down, spot volatility jumps up.!? Since volatility is persistent, it stays at high levels
for a while allowing the generatation of extreme returns without the Poisson component.
Such dynamics are very similar to the one generated by multiplicative volatility factors in
LL2VI. Despite the intuitive appeal of AFF1V-JJ, we can not distinguish it from a more
parsimonious AFF1V-J based on the EMM diagnostics. Dramatic decrease in the objective
function is not compensated by the lost degrees of freedom, and, as a result, asymptotic
p—values are almost identical. The t—ratio diagnostics do not clarify the picture either:
while the GARCH part of the auxiliary model seems to be fit worse by AFF1V-JJ.

3.3 Additional Diagnostics via Reprojection

Our results up to this point indicate that, intuitively, a pure diffusion model with multi-

plicative volatility factors, one of which is almost explosive, can generate dynamics similar

10This behavior is modeled by negative correlation ¢;. It is very hard to estimate this parameter with
high precision because it measures the correlation of two seldom and unobservable events, therefore the large

standard error reported in the table should not be surprising.
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to that of single volatility model with explicit jump component. The empirical success of
the logarithmic specification can intuitively be explained by the fact that the second factor
not only accommodates the tails of the (conditional) return distribution, but also accom-
modates the volatility dynamics during extreme market conditions, since the specification
of the second factor is mean-reverting with local persistence and state-dependent volatil-
ity of volatility. The potential explosiveness of the persistent volatility factor contributes
to realistic modeling of the extreme behavior. This finding has potentially very important
implications because, if the diffusion model turns out to be better than the jump-diffusion
previously advocated in the literature, this will have very important simplifying implications
for hedging as well as complicating implications for option pricing.

For this reason, we further investigate the best models from each class in order to better
understand the differences and commonalities between the two models. We turn therefore
our attention to the time series properties of the volatility factors. Since the factors are
latent we use the reprojection method of Gallant and Tauchen (1998). Figures 2 through 5
report time series plots of the Dow Jones returns and volatility factors reprojected from the
single volatility (benchmark) models in affine and logarithmic class as well as from the most
successful models in each class.

The first two plots pertain to AFF1V and AFF1V-J covering sample 1953-1999 (Figure
2) and a single year, namely 1998 (Figure 3). Likewise, Figures 4 and 5 cover LL1VF and
LL2VT for the same samples, i.e. 1953-1999 and 1998. Note that we report the estimates of
the logarithm of the affine volatility factors to make them comparable to the volatility factors
from the logarithmic models. It is worth noting that when one looks at Figures 3 and 4 it
appears that the model without jumps (AFF1V) creates a more volatile reprojected factor
than the model with jumps (AFF1V-J). This is as expected given that the parameter esti-
mates of the model will jumps yielded a more persistent Us process. Note that in logarithmic
models the volatility level is controlled through one parameter (o, while in affine models it
is controlled through «;q/c;. Since we can not allocate /31y between the two volatility factors
in LL2VF, we report factors scaled by the respective weights, (9, without regard to the
level on all plots. As a result, one can compare the shape and relative size of the volatility,
but not the level.

The one-factor models yield reprojected volatilities which look quite different. The
AFF1V appears to be more erratic, which is consistent with a much lower persistence mea-
sured by ass. Nonetheless, the overall pattern and the volatility range seems to be close for

both models. These plots partially confirm the findings of ABL, who compare the empirical
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fit of logarithmic and affine volatility models.

The volatility factors in the preferred specifications resemble each other much better.
The persistence, range and level (after taking into an account the value of 5y &~ —2.2) of
the first volatility factor, Us;, of the LL2VT model is very close to the only volatility factor
of AFF1V-J. We plotted a single year from the sample, namely 1998, to highlight that
the first factor in LL2VT picks up persistence, as does the volatility factor in AFF1V-J,
(see Figures 3 and 5), and in fact resembles very much the single factor model reprojected
volatilities. The second factor of LL2VT looks very different. This is apparent from both
the entire sample plot in Figure 4 as well as the 1998 reprojected volatilities. The second
volatility factor Uy clearly behaves like white noise allowing to generate observations in the
tails similarly to the jump component of AFF1V-J.1!

The local behavior of LL2VT is very different from AFF1V-J model, even from a the-
oretical point of view. For the jump-diffusion model extreme events are represented by the
i.i.d. jump process, while the second volatility factor in the LL2VT model has a half life
of three and a half days, meaning that extreme events taper off over several days.'? This
is consistent with Das and Sundaram (1999) who find downward sloping and hump-shaped
term structures of higher moments for jump-diffusions and pure diffusions respectively. The
model diagnostics that we have used do not pick up the subtle features of the data gener-
ating processes. The statistical tools appear unable to discriminate between such features

pertaining to events rarely occuring over the entire sample (despite its length).

4 Conclusion

In this paper we examine various generalizations of SV models via the EMM estimation
procedure applied to a sample of post-war Dow Jones daily return series.

We explored and compared the following two-factor specifications (1) a continuous path
affine diffusion factor process augmented with a jump component to better fit the tail behav-
ior, (2) a two-factor logarithmic SV specification with possible feedback, the latter causing
volatility of volatility to increase, and (3) the two factor affine SV model.

We find that the none of the one-factor stochastic volatility specifications fit the data,

'We notice that the reprojected path of Uy features the local exuberance around the summer of 1998

when LTCM and the Russian financial crisis shook financial markets.
12The calculation of the half-life is based on the formula 250 * In(2)/(—a44) with aus = -52.67 (see Table

9).
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which confirms previous findings. We note that the asymptotic p—value for the affine model
is much higher than for logarithmic specification.

The two-factor affine model improves dramatically upon the single volatility model in
terms of the EMM objective function value. However, the associated loss of degrees of
freedom does not compensate enough: p—values of one and two factor affine models are
roughly the same. The same conclusion applies to affine model with jumps to returns which
have zero mean. However, the model can not be rejected at 10% confidence level when
the constraint on the mean of the jump size is relaxed. Moreover, this simple modification
dramatically changes the behavior of both volatility, which becomes more persistent, and
jumps, which become less frequent. The jumps to volatility further reduce the objective
function value.

Based on the p—values we find that the logarithmic two-factor model specification without
feedback is rejected at the 5 % significance level, though it dominates all rejected affine
models. The most important new finding is that two factor logarithmic specification involving
at least one volatility factor with feedback fit the data with the p—values of over 50%. Thus,
we find that logarithmic factor model with feedback, which has rapidly moving stochastic
volatility of volatility, is at par with the affine jump model.

All two-factor specifications feature one factor which accounts for the persistence in
volatility and the second determines the tail behavior. The empirical success of the loga-
rithmic specification can intuitively be explained by the fact that the second factor not only
accommodates the tails of the (conditional) return distribution, but also accommodates the
volatility dynamics during extreme market conditions, since the specification of the second
factor is mean-reverting with local persistence and state-dependent volatility of volatility.
The near explosiveness of the short memory volatility factor contributes to realistic model-
ing of the extreme behavior. The model diagnostics do not pick up the subtle differences in
microscopic features of the data generating processes.

Casual observations of the data reveal that abrupt changes in the volatility are an essential
ingredient of a successful model. Jumps in returns and volatility simultaneously appear to
be the ideal model. Yet, the improvement in statistical fit is not strong enough to justify
this conclusion. The statistical tools combined with the data do not allow us to fine-tune
the diagnostic any further to declare an overall winner. Additional data, e.g. options data,
would help in discriminating the remaining competing models.

For the purpose of option pricing, it would be appealing to rely on affine class with

jumps, since closed-form solutions are readily available, although hedging is easier with
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diffusion models than with jump-diffusions because the strategies are simpler to determine

and fewer instruments are required.
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A Regularity Conditions for Logarithmic Models

The use of logarithmic volatility models raises several issues regarding regularity condi-
tions which ensure existence of moments, strong solutions to stochastic difference equations
(SDEs), and convergence of discretization schemes. In particular, the stochastic integrals
associated with the SDEs of the logarithmic SV models with feedback are not defined in the
usual sense (the integrand has to be in L?, e.g. Kloeden and Platen, 1995, p. 81-82).! The
exponential transformation of the volatility factors results in explosive behavior. The explo-
siveness of the logarithmic SV process has been recognized for a while in the term structure
literature. For instance, Brace et al. (1997) replace the continously compounded rate by the
effective annual rate. This removes the exponentiation of a lognormal variable, which in its
turn removes fatness in the tail, so that the moments exist.

We have to ensure that solutions to the specified logarithmic SV processes exist and are
unique.' The processes we consider do satisfy the local Lipshitz conditions, but violate the
usual growth conditions in It6’s theorem (Kloeden and Platen, 1995, p. 128). To resolve
this problem we splice the exponential volatility function in (7) with appropriate growth
conditions at the point, which corresponds to the volatility level unlikely to occur in the U.S
markets, i.e. 150% annualized.'®

Formally, instead of the volatility specification (7), we estimated:

o(u) = exp (u) if u < wy =log(1.5) (28)

uO .
=y o — ud +u? otherwise

where at least one of the 7; in (3) is equal to one. Now it is clear that we can find a constant
K, such that:
o? (u) < K? (1 + u2) (29)

The particular functional form of o in (28) is selected to ensure a smooth splicing, i.e. the
two functions and their first derivatives coincide at wuyg.
This modification is adequate to ensure the existence of stochastic integrals, SDE so-

lutions, convergence of discretization schemes, and EMM applicability. From the practical

3We are greatful to Nour Meddahi for pointing this out to us.
147t should be noted that we are discussing sufficient conditions. See Chen, Hansen and Carrasco (2001)

for further discussion.
5For comparison, on October 19th, 1987 implied one-month volatility on S&P 100, which is approximately

equal to integrated volatility over the whole month, was equal to 150%.
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perspective, we are effectively considering the exponential form of the volatility function.

Figure 6 compares both specifications.
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Figure 2: Reprojection of volatility factors from AFF1V and AFF1V-J Models - 1953-1999

Dow Jones Industrial Average, Daily Returns, 1953-1999
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Figure 3: Reprojection of volatility factors from AFF1V and AFF1V Models - 1998

Dow Jones Industrial Average, Daily Returns, 1998
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Figure 4: Reprojection of volatility factors from LL1VF and LL2VI Models - 1953-1999
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Figure 5: Reprojection of volatility factors from LL1VF and LL2VI Models - 1998

Dow Jones Industrial Average, Daily Returns, 1998
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Figure 6: The functional form of the diffusion coefficient in logarithmic models:

Spline vs. Pure exponential form
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Table 1. Model Definitions and Minimized Chi-Squared Criterion.

Q19 12 Qo Q30 Q33 Q4o 044 Pro P13z Bra Bao B33 Bao Baa Y1z via Ay pg o5 Py d X?'(ﬁ) df p-value
AFF1V ok ok kX * 1 * 20.196 9 0.0167
AFF2V ook ok kX Xk koK 1 1 * % 13.668 5 0.0179
AFF1V-Jo * * * *x % * 1 * 5.60 * 18.704 7 0.0092
AFF1V-J * * % % % * 1 * 1.70 * * 11.213 6 0.0820
AFF1V-JJ] * * % % % * 1 * 1.70 * * * 8.577 5 0.0726
LL1V ¥ ook Ok * ¥k 1 * 30.062 9 0.4e-04
LL1VF ook Ok * koK 1 * * 22.752 8 0.0037
LL2V ook Ok * * OO | 1 kX 15.037 6 0.0200
LL2VI ¥ ook Ok * * ook oox 1 * * % 4.153 5 0.5276
LL2VF ¥ ook Ok * * O R 3.171 4 0.5296

Notes: In this paper we consider the following model specifications:

d?ljt = (10 + a12Us) dt
+ 0 (Bro + P13Ust + fraUs) (\/ 1 — iy — Y3 dWiy + 13dWae + ¢14dW4t> + (e7vr = 1) dVy
dUst = «aooUsdt + dWoy
AUy = (a0 +aiUi) dt + (Bio + BiiUit)" dWit + J3 1d Ny, i = 3,4
o(u) = +Vu,y =0.5for AFF
o(u) = exp(u),v; =0 for LL or v; = 1 for LLF

Ny ~ Poi(\y)

J3: ~ EXP(0)

Jig ~ N(ps+psdse, o)
* denotes a free parameter; 1 denotes a parameter pinned at unity; blank denotes a parameter
set to zero. The reported results are based on a simulation of length N = 75,000 simulated

at 1/A = 6048 steps per year, or, equivalently 24 steps per day with 252 trading days per
year.
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Table 2. Parameter Estimates, Standard Errors and t¢-ratio diagnostics
for the AFF1V model, homogeneous score case

Panel A. Parameter Estimates and Standard Errors

Intuitive Best

Est SE Est SE
a0 0.1096 0.0652 0.0989  0.0203
a1y 0.8992 1.5165 5.7842  2.3474
oy -1.1644 3.5986  -44.5889 30.8810
aso  0.8445 0.1460 1.1864 0.0136
a3z -3.3857 0.7865 -132.2989 36.0200
B3 0.0604 0.0115 1.1245 0.0783
Y13 -0.2786 0.1459 -0.1574  0.0948

X2 =31.815 X2 = 17.886

Panel B. t-ratio diagnostics

Intuitive Best

AR bo -1.806  2.725
AR by 1.771 1.159

GARCH To 2102 2335
GARCH 1y, 0.849  3.352
GARCH 14 1.671 3.111

Hermite  ao1 -1.753  2.531
Hermite  ags 2.748 2.767
Hermite  ap3 -2.305 2.733
Hermite  aoq 2.527  2.786
Hermite  ags -2.560  0.973
Hermite aog 2.028 2.903
Hermite Qo7 -2.662 0.023
Hermite  ags 1.762  2.670

Notes: Entries to the table show the parameter estimates along with conventional Wald-type

standard errors determined by numerical differentiation for one-factor affine models:

dP,
=t = (a0 + a12Ust) dt + +/ f13Use (\/ 1— p2dWy + 1/J13dW3t>

P
AUzt = awppUsidt + dWoy,

dUs; (30 + assUse) dt + / %?;YtdWiit



Table 3. Parameter Estimates and Standard Errors for Affine Models

10
Q12
Q22
Q30
Q33
Q40

Q44

B3
Bra

1/}14

Ag
nr

aJ

(o)

AFF1V AFF2V AFF1V-J0 AFF1V-] AFF1V-JJ
Est SE Est SE Est SE Est SE Est SE
0.1008 0.0184 0.0985 0.0202  0.1070 0.0198  0.08625 0.0236 0.0843 0.0226
4.4309 0.1233 4.2116 1.5694  1.5575 0.4724 3.2190 1.8839 3.1880 1.0081

-27.0252 3.2074 -2.1428 1.4014 -3.0035 1.7006 -10.9593 13.2870 -11.6233 7.1798

1.2241 0.0009 1.1598 0.2894  0.9756 0.1703 1.0197 0.1152 0.7494 0.0826

-137.8742 0.1663 -33.0876 17.4321 -5.7521 1.0712 -2.7898  0.5440 -3.6407 0.8597
1.0655 0.0602
-92.8250 13.6036

1.0477 0.0605 0.2975 0.1258  0.0729 0.0125 0.0427 0.0101 0.0742 0.0124
0.0050 0.0344

-0.1991 0.0039 -0.4058 0.0534 -0.4830 0.0144 -0.4762  0.0987 -0.5199 0.0904
0.9031 0.0221

5.60 1.70 1.70

-0.0301 0.0023 -0.0089 0.0026

0.0213 0.0002 0.0078 0.0010 0.0173 0.0010

-0.8767 2.0354

0.0181 0.0420

Notes: Entries to the table show the parameter estimates along with conventional Wald-type

standard errors determined by numerical differentiation for the affine models:

dP,
?t = (10 + a12Us) dt
b
+  VB13Uss + BraUy (\/ 1 — iy — 3 dWiy + P13dWae + 1/114dW4t> + (e’ = 1) dV,
dUQt = OéQQUQtdt + dWQt
AU = (o + @;iUi) dt + \/UdWiy + J31dNy, i = 3,4

N, ~ Poi(\y)
Jsi ~ EXP(5)
Jig ~ N(ps+psJse, o)
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Table 4. Parameter Estimates and Standard Errors for Logarithmic Models

LL1V LL1VF LL2V LL2VI LL2VF

Est SE Est SE Est SE Est SE Est SE

aip  0.0831 0.0200  0.0841 0.0195 0.0780 0.0337 0.0589 0.0225 0.0674 0.0279
a2 0.6787 0.0513  0.8870 0.1397 0.9833 0.4820 1.1670 0.7872 2.1927 0.7281
gz -0.6087 0.8540 -1.0531 0.3425 -1.1219  1.0043 -1.1701 2.5137 -7.0195 5.9997
agz -6.3778 0.9315 -4.3016 0.3601 -0.0041  0.0291 -0.0512 0.0410 -0.1203 0.1227
04 -74.7610 10.7994 -52.6673 3.1107 -51.3082 8.2119

B0 -2.2882 0.0320 -2.2585 0.0253 -2.0659 1.0294 -2.1969 0.0414 -2.2143 0.0486
Bz 1.3708 0.1059  1.2051 0.0410 0.0367 0.0261 0.0863 0.0400 0.1348 0.0695

B4 3.5477  0.5162 2.7688 0.2597 2.7442 0.3130
Ba3 0.5342 0.1168 0.0408 0.3672
Baa 1.9228 0.2260 2.2169 0.3655
13 -0.6482 0.0216 -0.6365 0.0107 -0.3382  0.3285 -0.2966 0.0240 -0.3403 0.1077
Y14 -0.3538 0.0793 -0.2915 0.0408 -0.2804 0.0564

Notes: Entries to the table show the parameter estimates along with conventional Wald-type

standard errors determined by numerical differentiation for logarithmic models:

dP,
?tt = (aio + a12Us;) dt + exp (Bro + B13Use + B14Ust) (\/ 1 — 2y — 3, dWhy + 13dWay + ¢14dW4t>

AUy = owpUsdt + dWoy
AUy = auUpdt + (14 BiiUy)" dWy, i = 3,4
v = 0 for LL or 7; = 1 for LLF
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Table 5. t-Ratio Diagnostics

AR
AR

GARCH
GARCH
GARCH

Hermite
Hermite
Hermite
Hermite
Hermite
Hermite
Hermite
Hermite
Hermite
Hermite

Hermite

bo
by

7o
Tla

Tig

aio
ao1
a1
o2
a2
o3
ao4
aos
Qo6
ag7

aos

LL1V LL1VF

LL2V LL2VI LL2VF AFF1V AFF2V AFF1V-JO AFF1V-J AFF1V-JJ

-1.509
1.593

3.828
2.804
3.664

0.033
0.694
1.938
3.899
-1.189
-0.080
4.313
-1.243
3.502
-1.841
2.528

-0.081 1.706
0.521 0.941

3.519 2.364
2.641 3.167
3.164 2.765

0.665 -0.748
0.094 2.117
0.531 0.740
3.660 3.719
-0.743 -1.477
-0.233 2.134
4.192 4.012
-0.790 0.252
3.557 1.587
-1.075 -1.095
2.710 1.271

0.410
0.011

1.842
1.521
1.708

-0.273
0.407
-0.473
0.789
-0.841
0.136
1.106
-0.451
1.344
-0.912
1.079

-0.110
-0.409

1.675
1.761
1.688

-0.177
0.051
-0.825
-0.034
-0.469
0.040
0.115
-0.076
0.392
-0.276
0.358

1.428
0.397

3.580
3.992
3.973

-0.497
1.085
-0.604
2.325
-0.920
0.827
1.633
0.582
1.597
0.253
1.833

0.912
1.122

0.858
1.844
1.483

-1.853
2.240
0.955
2.471

-2.653
1.064
2.758

-0.826
2.464

-1.706
2.168

-3.120
0.266

2.996
2.079
2.905

-0.919
-0.837
1.623
2.106
-1.738
-0.981
1.942
-1.119
1.539
-1.103
1.290

0.566
-0.137

-0.699
-0.448
-0.553

-1.379
2.509
-0.504
0.556
-1.213
2.432
0.430
1.580
0.075
0.806
-0.420

1.553
0.456

-1.884
-2.335
-2.133

-0.614
0.992
-0.047
1.827
-0.591
0.562
1.173
-0.115
0.253
-0.343
-0.754
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