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Résumé / Abstract 
 
 

L'évaluation des modèles de risque financier, ou test inversé, est une partie importante 
de l'approche avec modèle interne pour la gestion de risque tel qu'établie par le Comité 
de Basle pour la supervision bancaire (1996). Toutefois, les procédures existantes de 
tests inversés telles que celles développées dans Christoffersen (1998), ont une 
puissance relativement faible pour des tailles d'échantillon réalistes. Les méthodes 
suggérées dans Berkowitz (2001) performe mieux mais sont basées sur de l'information, 
telle que la forme de la queue gauche de la distribution des rendements du portefeuille, 
qui n'est pas toujours disponible. La mesure de risque de loin la plus courante est la 
Valeur-à-Risque (VaR), qui est définie comme un quantile de la distribution 
conditionnelle du rendement, et elle ne dit rien à-propos de la forme de la distribution à 
gauche du quantile. Notre contribution est l'exploration d'un nouvel outil pour les tests 
inversés basé sur la durée en jours entre les violations de la VaR. L'intuition est que si le 
modèle de VaR est correctement spécifié pour un taux de couverture p, alors la durée 
espérée conditionnelle entre les violations devrait être une constante 1/p jours. Nous 
proposons diverses façons de tester cette hypothèse nulle et nous effectuons une analyse 
Monte Carlo où l'on compare ces nouveaux tests à ceux présentement disponibles. Nos 
résultats montrent que pour des situations réalistes, les tests basés sur les durées ont de 
meilleures propriétés en termes de puissance que ceux précédemment proposés. La taille 
des tests est facilement contrôlée en utilisant la technique Monte Carlo de Dufour 
(2000). 
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Financial risk model evaluation or backtesting is a key part of the internal model's 
approach to market risk management as laid out by the Basle Commitee on Banking 
Supervision (1996). However, existing backtesting methods such as those developed in 
Christoffersen (1998), have relatively small power in realistic small sample settings. 
Methods suggested in Berkowitz (2001) fare better, but rely on information such as the 
shape of the left tail of the portfolio return distribution, which is often not available. By 
far the most common risk measure is Value-at-Risk (VaR), which is defined as a 
conditional quantile of the return distribution, and it says nothing about the shape of the 
tail to the left of the quantile. Our contribution is the exploration of a new tool for 
backtesting based on the duration of days between the violations of the VaR. The chief 
insight is that if the VaR model is correctly specified for coverage rate, p, then the 
conditional expected duration between violations should be a constant 1/p days. We 
suggest various ways of testing this null hypothesis and we conduct a Monte Carlo 
analysis which compares the new tests to those currently available. Our results show 
that in realistic situations, the duration based tests have better power properties than the 
previously suggested tests. The size of the tests is easily controlled using the Monte 
Carlo technique of Dufour (2000). 

 
Keywords: Risk Model Evaluation, Historical Simulation, Density 
Forecasting, Monte Carlo Testing. 



1 Motivation

Financial risk model evaluation or backtesting is a key part of the internal model’s approach to

market risk management as laid out by the Basle Committee on Banking Supervision (1996).

However, existing backtesting methods such as those developed in Christoffersen (1998), has

relatively small power in realistic small sample settings. Methods suggested in Berkowitz (2001)

fare better, but rely on information such as the shape of the left tail of the portfolio return

distribution, which is often not available. By far the most common risk measure is Value-at-Risk

(V aR), which is defined as a conditional quantile of the return distribution, and it says nothing

about the shape of the tail to the left of the quantile.

We will refer to an event where the ex-post portfolio loss exceeds the ex-ante V aRmeasure as a

violation. Of particular importance in backtesting is the clustering of violations. An institution’s

internal risk management team as well as external supervisors explicitly want to be able to detect

clustering in violations. Large losses which occur in rapid succession are more likely to lead to

disastrous events such as bankruptcy.

In the previous literature, due to the lack of real portfolio data, the evaluation of V aR

techniques were largely based on artificial portfolios. Examples in this tradition include Beder

(1995), Christoffersen, Hahn and Inoue (2001), Hendricks (1996), Kupiec (1995), Marshall and

Siegel (1997), and Pritsker (1997). But recently, Berkowitz and O’Brien (2002) have reported

on the performance of actual V aR forecasts from six large (and anonymous) U.S. commercial

banks.1 Figure 1 reproduces a picture from their paper which shows the V aR exceedences from

the six banks reported in standard deviations of the portfolio returns. Even though the banks

tend to be conservative—they have fewer than expected violations—the exceedences are large and

appear to be clustered in time and across banks. From the perspective of a regulator worried

about systemic risk, rejecting a particular bank’s risk model due to the clustering of violations

is particularly important if the violations also happen to be correlated across banks.

The detection of violation clustering is particularly important because of the widespread

reliance on V aRs calculated from the so-called Historical Simulation (HS) technique. In the

HS methodology, a sample of historical portfolio returns using current portfolio weights is first

constructed. The V aR is then simply calculated as the unconditional quantile from the historical

sample. The HS method thus largely ignores the last 20 years of academic research on conditional

asset return models. Time variability is only captured through the rolling historical sample. In

spite of forceful warnings, such as Pritsker (2001), the model-free nature of the HS technique

is viewed as a great benefit by many practitioners. The widespread use of HS the technique

motivates us to focus attention on backtesting V aRs calculated using this method.

1Barone-Adesi, Giannopoulos and Vosper (2000) provides another example using real-life portfolio returns.
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While alternative methods for calculating portfolio measures such as the V aR have been inves-

tigated in for example Jorion (2000), and Christoffersen (2002), available methods for backtesting

are still relatively few. Our contribution is thus the exploration of a new tool for backtesting

based on the duration of days between the violations of the risk metric. The chief insight is

that if the V aR model is correctly specified for coverage rate, p, then the conditional expected

duration between violations should be a constant 1/p days. We suggest various ways of testing

this null hypothesis and we conduct a Monte Carlo analysis which compares the new tests to

those currently available. Our results show that in many realistic situations, the duration based

tests have better power properties than the previously suggested tests. The size of the tests is

easily controlled using the Monte Carlo testing approach of Dufour (2000). This procedure is

described in detail below.

We hasten to add that the sort of omnibus backtesting procedures suggested here are meant

as complements to—and not substitutes for—the statistical diagnostic tests carried out on various

aspects of the risk model in the model estimation stage. The tests suggested in this paper can

be viewed either as a final diagnostic for an internal model builder or alternatively as a feasible

diagnostic for an external model evaluator for whom only limited, aggregate portfolio information

is available.

Our paper is structured as follows: Section 2 outlines the previous first-order Markov tests,

Section 3 suggests the new duration-based tests, and Section 4 discusses details related to the

implementation of the tests. Section 5 contains Monte Carlo evidence on the performance of the

tests. Section 6 suggests various extensions to the analysis, and Section 7 concludes.

2 Extant Procedures for Backtesting Value-at-Risk

Consider a time series of daily ex-post portfolio returns, Rt, and a corresponding time series

of ex-ante Value-at-Risk forecasts, V aRt(p) with promised coverage rate p, such that ideally

Prt−1 (Rt < −V aRt(p)) = p. The negative sign arises from the convention of reporting the V aR

as a positive number.

Define the hit sequence of V aRt violations as

It =

(
1, if Rt < −V aRt (p)

0, else

Notice that the hit sequence appears to discard a large amount of information regarding the

size of violations etc. Recall, however, that the V aR forecast does not promise violations of a

certain magnitude, but rather only their conditional frequency, i.e. p. This is a major drawback

of the V aR risk measure which we will discuss below.
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Christoffersen (1998) tests the null hypothesis that

It ∼ i.i.d. Bernoulli(p)

against the alternative that

It ∼ i.i.d. Bernoulli(π)

and refers to this as the test of correct unconditional coverage (uc)

H0,uc : π = p

which is a test that on average the coverage is correct. The above test implicitly assumes that

the hits are independent an assumption which we now test explicitly. In order to test this

hypothesis an alternative is defined where the hit sequence follows a first order Markov sequence

with switching probability matrix

Π =

"
1− π01 π01

1− π11 π11

#

where πij is the probability of an i on day t − 1 being followed by a j on day t. The test of

independence (ind) is then

H0,ind : π01 = π11

Finally one can combine the two tests in a test of conditional coverage (cc)

H0,cc : π01 = π11 = p

The idea behind the Markov alternative is that clustered violations represent a signal of risk

model misspecification. Violation clustering is important as it implies repeated severe capital

losses to the institution which together could result in bankruptcy.

Notice however, that the Markov first-order alternative may have limited power against gen-

eral forms of clustering. The first point of this paper is to establish more general tests for

clustering which nevertheless only rely on information in the hit sequence.

3 Duration-Based Tests of Independence

The above tests are reasonably good at catching misspecified risk models when the temporal

dependence in the hit-sequence is of a simple first-order Markov structure. However we are

interested in developing tests which have power against more general forms of dependence but

which still rely only on estimating a few parameters.
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The intuition behind the duration-based tests suggested below is that the clustering of no-hit

durations will result in an excessive number of relatively short and relatively long durations,

corresponding to market turbulence and market calm respectively. Motivated by this intuition

we consider the duration of time (in days) between two V aR violations (i.e. the no-hit duration)

as

Di = ti − ti−1

where ti denotes the day of violation number i.2

Under the null hypothesis that the risk model is correctly specified, the no-hit duration should

have no memory and a mean duration of 1/p days. To verify the no memory property note that

under the null hypothesis we have the discrete probability distribution

Pr (D = 1) = p

Pr (D = 2) = (1− p) p

Pr (D = 2) = (1− p)2 p

...

Pr (D = d) = (1− p)d−1 p.

A duration distribution is often best understood by its hazard function, which has the intuitive

definition of the probability of a getting a violation after D days given that we have gone D days

without a violation. The above probability distribution implies a flat discrete hazard function

as the following derivation shows

λ (d) =
Pr (D = d)

1−Pj<d Pr (D = d)

=
(1− p)d−1 p

1−Pd−1
i=1 (1− p)i p

=
(1− p)d−1 p

1−Pd−2
j=0 (1− p)j p

= p.

The only memory free (continuous)3 random distribution is the exponential, thus we have

that under the null the distribution of the no-hit durations should be

fexp (D; p) = p exp (−pD) .
2For a general introduction to duration modeling, see Kiefer (1988) and Gourieroux (2000).
3Notice that we use a continuous distribution even though we are counting time in days. This discreteness bias

will we acounted for in the Monte Carlo tests. The exponential distribution can also be viewed as the continuous

time limit of the above discrete time process. See Poirier (1995).
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In order to establish a statistical test for independence we must specify a (parsimonious)

alternative which allows for duration dependence. As a very simple case, consider the Weibull

distribution where

fW (D; a, b) = abbDb−1 exp
¡−(aD)b¢ .

The Weibull distribution has the advantage that the hazard function has a closed form rep-

resentation, namely

λW (D) ≡ fW (D)

1− FW (D)
= abbDb−1

where the exponential distribution appears as a special case with a flat hazard, when b = 1. The

Weibull will have a decreasing hazard function when b < 1, which corresponds to an excessive

number of very short durations (very volatile periods) and an excessive number of very long

durations (very tranquil periods). This could be evidence of misspecified volatility dynamics in

the risk model.

Due to the bankruptcy threat from VaR violation clustering the null hypothesis of indepen-

dence is of particular interest. We therefore want to explicitly test the null hypothesis

H0,ind : b = 1.

We could also use the Gamma distribution under the alternative hypothesis. The p.d.f. in

this case is

fΓ (D; a, b) =
abDb−1 exp (−aD)

Γ (b)

which also nests the exponential when b = 1. In this case we therefore also have the independence

test null hypothesis as

H0,ind : b = 1.

The Gamma distribution does not have a closed-form solution for the hazard function, but

the first two moments are b
a
and b

a2
respectively, so the notion of excess dispersion which is

defined as the variance over the squared expected value is simply 1
b
.

Note that the average duration in the exponential distribution is 1/p, and the variance of

durations is 1/p2, thus the notion of excess dispersion is 1 in the exponential distribution.

3.1 A Conditional Duration Test

The above duration tests can potentially capture higher order dependence in the hit sequence by

simply testing the unconditional distribution of the durations. Dependence in the hit sequence

may show up as an excess of relatively long no-hit durations (quiet periods) and an excess of

relatively short no-hit durations, corresponding to violation clustering. However, in the above
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tests, any information in the ordering of the durations is completely lost. The information

in the temporal ordering of no-hit durations could be captured using the framework of Engle

and Russel’s (1998) Exponential Autoregressive Conditional Duration (EACD) model. In the

EACD(1,0) model, the conditional expected duration takes the following form

Ei−1 [Di] ≡ ψi = ω + αDi−1

with α ∈ [0, 1) . Assuming an underlying exponential density with mean equal to one, the condi-
tional distribution of the duration is

fEACD (Di|ψi) =
1

ψi

exp

µ
−Di

ψi

¶
The null of independent no-hit durations would then correspond to

H0,ind : α = 0.

Excess dispersion in the EACD(1,0) model is defined as

V [Di]/E[Di]
2 =

1

1− 2α2
so that the ratio of the standard deviation to the mean duration is above one if α > 0.

4 Test Implementation

We will first discuss the specific implementation of the hit sequence tests suggested above. Later,

we will simulate observations from a realistic portfolio return process and calculate risk measures

from the popular Historical Simulation risk model, which in turn provide us with hit sequences

for testing.

4.1 Implementing the Markov Tests

The log-likelihood function for a sample of T i.i.d. observations from a Bernoulli variable, It,

with known probability p is written as

lnL (I, p) = pT1 (1− p)T−T1

where T1 is the number of ones in the sample. The log-likelihood function for an i.i.d. Bernoulli

with unknown probability parameter, π1, to be estimated is

lnL (I, π1) = πT11 (1− π1)
T−T1 .
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The ML estimate of π1 is

π̂1 = T1/T

and we can thus write a likelihood ratio test of unconditional coverage as

LRuc = −2 (lnL (I, π̂1)− lnL (I, p)) .

For the independence test, the likelihood under the alternative hypothesis is

lnL (I, π01, π11) = (1− π01)
T0−T01 πT0101 (1− π11)

T1−T11 πT1111

where Tij denotes the number of observations with a j following an i. The ML estimates are

π̂01 = T01/T0

π̂11 = T11/T1

and the independence test statistic is

LRind = −2 (lnL (I, π̂01, π̂11)− lnL (I, π̂1)) .

Finally the test of conditional coverage is written as

LRcc = −2 (lnL (I, π̂01, π̂11)− lnL (I, p)) .

We note that all the tests are carried out conditioning on the first observation. The tests are

asymptotically distributed as χ2 with degree of freedom one for the uc and ind tests and two for

the cc test. But we will instead rely on finite sample p-values below.

Finally, as a practical matter, if the sample at hand has T11 = 0, which can easily happen in

small samples and with small coverage rates, then we calculate the first-order Markov likelihood

as

lnL (I, π01, π11) = (1− π01)
T0−T01 πT0101

and carry out the tests as above.

4.2 Implementing the Weibull and EACD Tests

In order to implement our tests based on the duration between violations we first need to trans-

form the hit sequence into a duration series Di. While doing this transformation we also create

the series Ci to indicate if a duration is censored (Ci = 1) or not (Ci = 0). Except for the first

and last duration the procedure is straightforward, we just count the number of days between

each violation and set Ci = 0. For the first observation if the hit sequence starts with 0 then
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D1 is the number of days until we get the first hit. Accordingly C1 = 1 because the observed

duration is left-censored. If instead the hit sequence starts with a 1 thenD1 is simply the number

of days until the second hit and C1 = 0.

The procedure is similar for the last duration. If the last observation of the hit sequence is

0 then the last duration, DN(T ), is the number of days after the last 1 in the hit sequence and

CN(T ) = 1 because the spell is right-censored. In the same manner if the last observation of the

hit sequence is a 1 then DN(T ) = tN(T ) − tN(T )−1 and CN(T ) = 0.

The contribution to the likelihood of an uncensored observation is its corresponding p.d.f.

For a censored observation, we merely know that the process lasted at least D1 or DN(T ) so the

contribution to the likelihood is not the p.d.f. but its survival function S(Di) = 1 − F (Di).

Combining the censored and uncensored observations, the log-likelihood is

L(D;Θ) = C1 lnS(D1) + (1− C1) ln f(D1) +

N(T )−1X
i=2

ln(f(Di))

+CN(T ) lnS(DN(T )) + (1− CN(T )) ln f(DN(T )).

Once the durations are computed and the truncations taken care of, then the likelihood

ratio tests can be calculated in a straightforward fashion. The only added complication is that

the ML estimates are no longer available in closed form, they must be found using numerical

optimization.

4.3 Finite Sample Inference

While the large-sample distributions of the likelihood ratio tests we have suggested above are

well-known,4 they may not lead to reliable inference in realistic risk management settings. The

nominal sample sizes can be reasonably large, say two to four years of daily data, but the scarcity

of violations of for example the 1% V aR renders the effective sample size small. In this section,

we therefore present the technique of Monte Carlo tests [see Dufour (2000)].

For the case of a continuous test statistic, the procedure is the following. We first generate

N independent realizations of the test statistic, LRi, i = 1, . . . , N . We denote by LR0 the test

computed with the original sample. Under the hypothesis that the risk model is correct we

know that the hit sequence is i.i.d. Bernoulli with the mean equal to the coverage rate in our

application. We thus benefit from the advantage of not having nuisance parameters under the

null hypothesis.

4Testing α = 0 in the EACD(1,0) model presents a potential difficulty asymptotically in that it is on the

boundary of the parameter space.
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We next rank LRi, i = 0, . . . , N in non-decreasing order and obtain the Monte Carlo p-value

p̂N(LR0) where

p̂N(LR0) =
NĜN(LR0) + 1

N + 1

with

ĜN(LR0) =
1

N

NX
i=1

1 (LRi > LR0)

where 1 (∗) takes on the value 1 if ∗ is true and the value 0 otherwise.
When working with binary sequences the test values can only take a countable number of

distinct values. Therefore, we need a rule to break ties between the test value obtained from

the sample and those obtained from Monte Carlo simulation under the null hypothesis. The

tie-breaking procedure is as follows: For each test statistic, LRi, i = 0, . . . , N , we draw an

independent realization of a Uniform distribution on the [0; 1] interval. Denote these draws by

Ui, i = 0, . . . , N . The Monte-Carlo p-value is now given by

p̃N(LR0) =
NG̃N(LR0) + 1

N + 1

with

G̃N(LR0) = 1− 1

N

NX
i=1

1 (LRi < LR0) +
1

N

NX
i=1

1 (LRi = LR0)1 (Ui ≥ U0) .

5 Backtesting V aRs from Historical Simulation

We now assess the power of the proposed duration tests in the context of a Monte Carlo study.

Consider a portfolio where the returns are drawn from a GARCH(1,1)-t(d) model with leverage,

that is

Rt+1 = σt+1
p
((ν − 2) /ν)zt+1, with

σ2t+1 = ω + ασ2t

³p
((ν − 2) /ν)zt − θ

´2
+ βσ2t

where the innovation zt+1’s are drawn independently from a Student’s t (ν) distribution. Notice

that the innovations have been rescaled to ensure that the conditional variance of return will be

σ2t+1.
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In the simulations below we choose the following parameterization

α = 0.1

θ = 0.5

β = 0.85

ω = 3.9683e− 6
ν = 8

where ω is set to target an annual standard deviation of 0.20. The parameters imply a daily

volatility persistence of 0.975, a mean of zero, a conditional skewness of zero, and a conditional

(excess) kurtosis of 1.5. This particular DGP is constructed to form a realistic representation of

an equity portfolio return distribution.

The risk measurement method under study is the popular Historical Simulation (HS) tech-

nique. It takes the Value at Risk on a certain day to be simply the unconditional quantile of the

past Te daily observations. Specifically

V aRp
t+1 = −Percentile({Rτ}tτ=t−Te+1 , 100p).

From the return sample and the above V aR, we are implicitly assuming that $1 is invested

each day. Equivalently, the V aR can be interpreted as being calculated in percent of the portfolio

value.

In practice, the sample size is often determined by practical considerations such as the amount

of effort involved in valuing the current portfolio holdings using past prices on the underlying

securities. For the purposes of this Monte Carlo experiment, we set Te = 250 or Te = 500

corresponding to roughly one or two years of trading days.

The V aR coverage rate, p, is typically chosen in practice to be either 1% or 5%, and below

we assess the power to reject the HS model using either of those rates. Figure 2 shows a return

sample path from the above GARCH-t(d) process along with the 1% and 5% V aRs from the HS

model (with Te = 500). Notice the peculiar step-shaped V aRs resulting from the HS method.

Notice also the infrequent changes in the 1% V aR.

The V aR exceedences from the return sample path and the 1% V aR are shown in Figure 3

reported in daily standard deviations of returns. The simulated data in Figure 3 can thus be

compared with the real-life data in Figure 1, which was taken from Berkowitz and O’Brien (2002).

The clustering and the magnitude of the exceedences are quite similar across the two plots. Note

that we have simulated 1,000 observations in Figure 3, while Figure 1 contains between 550 and

750 observations per bank. Figure 3 contains more violations than Figure 1 because of these

differences in the sample size and because the banks in Figure 1 tend to report V aRs which on

average lead to fewer than p violations.
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Before assessing the finite sample power results we simulate one very long realization (5

million observations) of the GARCH return process and calculate 1% and 5% V aRs from His-

torical Simulation with a rolling set of 500 in-sample returns. The zero-one hit sequence is then

calculated from the ex-post daily returns and the ex-ante V aRs.

Figure 4 plots the hazard functions of the duration between violations in the long simulation

of GARCH data and Historical Simulation V aRs. The hazard from the 1% V aR is shown in

the top panel, and the 5% V aR in the bottom panel. The hazard functions are estimated

nonparametrically via the Kaplan-Meier product-limit estimator of the survival function, which

is described in Kiefer (1988). These hazards are estimated over intervals of 15 days so if there is

a probability p of getting a hit at each day then the probability that a given duration will last

less than 15 days is

15X
i=1

Pr(D = i) =
15X
i=1

(1− p)i−1p

= 1− (1− p)15.

For p equal to 1% and 5% we get a constant hazard of 0.14 and 0.54 respectively over a 15-day

interval. We see in Figure 4 that the estimated hazard is at first bigger and then lower than

what we would get with a constant probability of getting a hit. Notice the distinctly downward

sloping hazard functions, which correspond to positive duration dependence. Finally, Figure 5

shows the simple histograms of durations between the violations. The top panel again shows the

1% V aR and the bottom panel shows the 5% V aR.

Data and other resource constraints often force risk managers to backtest their models on a

relatively limited backtesting samples. We therefore conduct our power experiment with samples

sizes from 500 to 1500 days in increments of 250 days. Thus our backtesting samples correspond

to approximately two through six years.

Below we simulate GARCH returns, calculate HS V aRs and the various test statistics over

1,000 Monte Carlo replications. The power of the tests are then simply calculated as the number

of simulations, divided by 1000, in which the Monte Carlo p-value is smaller than the chosen

level. The rejection frequencies are calculated at the 1%, 5% and 10% significance levels. In

order to compute p-values we simulate N = 9999 hit sequence samples under the null hypothesis

that the sequences are distributed i.i.d. Bernoulli(p).

In order to make sure that we can calculate the test statistics, we do not use Monte Carlo

samples with zero or one V aR violations.5 This of course constitutes a nontrivial sample selection

rule for the smallest sample sizes and the 1% V aR coverage rate. As it is done for all the tests

5The likelihood of the Weibull distribution can be unbounded when we have only one uncensored observation.

When it happens we discard the sample. We get an unbounded likelihood for less than 3% of the draws when the
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considered, the results are still comparable across tests. It also appears to be realistic that a risk

management team would not start backtesting unless at least a couple of violations had occurred.

The rejection frequencies below reflect this sample selection which is particularly important for

the low (e.g. 1%) V aR coverage rates and in the smallest samples (500 observations).

5.1 Results

The results of the Monte Carlo simulations are presented in Tables 1 and 2. We report the

empirical rejection frequencies (power) for the Markov, Weibull and EACD independence tests

for various significance test levels, V aR coverage rates, and backtesting sample sizes. Table 1

reports power for a Historical Simulation Risk model with Te = 500 rolling estimation sample

observations and Table 2 for Te = 250 rolling estimation sample observations.6

The results are quite striking. The main result is that the Weibull test is virtually almost

more powerful than the Markov and EACD tests in rejecting the HS risk models. This result

holds across inference sample sizes, VaR coverage rates and significance levels chosen. The only

two exceptions occur in Table 1 for a significance level of 1%, a coverage rate of 5% and a sample

of 500 where the EACD is better and in Table 1 for a significance level of 1%, a coverage rate of

1% and a sample of 500 where the Markov test is slightly better.

The differences in power are sometimes very large. For example in Table 1 using a 1%

significance level, the 5% VaR in a sample of 1,250 observations has a Weibull rejection frequency

of 65.2% and a Markov rejection frequency of only 29.8%. The Weibull test clearly appears to

pick up dependence in the hit violations which is ignored by the Markov test.

The performance of the EACD test on the other hand is quite sporadic. It appears to do

quite well at smaller sample sizes but relatively poorly at larger sample sizes. We suspect that

the nonlinear estimate of the α parameter is poorly behaved.

Note that the rejection frequencies for a given test are not always increasing in inference

sample size. This is due to the sample selection procedure in which we discard samples with less

than two violations. This sample selection is going to increase power ceteris paribus, and it is

going to have the biggest effect in cells corresponding to the fewest average number of violations.

These are of course the smallest sample sizes and the smallest coverage rate.

Comparing rejection frequencies across coverage rates in Table 1 we also note that in small

samples the power is sometimes higher for the 1% VaR coverage rate than for the corresponding

coverage rate is 1% and the sample size is 500, and the probability is smaller than 0.5% for higher coverage rates

and sample sizes.
6We focus solely on the independence tests here because the historical simulation risk models under study are

correctly specified unconditionally.
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5% VaR. This may appear to be surprising as the hit sequences from the 5% VaRs contain many

more violations which is the source of power. But the sample selection procedure will again have

the largest effect for the 1% coverage rate and for the smallest samples. The selected samples for

1% coverage will thus tend to display more dependence on average than those selected for 5%

coverage rate.

Comparing numbers across Tables 1 and 2, we note that for a coverage rate of 1% the HS VaR

with Te = 500 rolling sample observations always has a higher rejection frequency than the HS

VaR with Te = 250 rolling sample observations. This result is interesting because practitioners

often work very hard to expand their data bases enabling them to increase their rolling estimation

sample period. Our results indicate that such efforts may be futile. When the return volatility

process is very persistent, it is better to use a relatively short rolling estimation sample period.

6 Possible Extensions

6.1 The Monte Carlo Study

Encouraged by the results in Tables 1-2, we now briefly outline some possible extensions to the

Monte Carlo study:

• We only investigated one particular parameterization of the GARCH process above. It

may be interesting to calculate the power of the test for processes with different volatility

persistence, different degrees of conditional kurtosis and different leverage effects.

• One could also consider more elaborate data generating processes. Engle and Lee (1999)
consider a component GARCHmodel which delivers long-memory like patterns in volatility.

Hansen (1994) considers GARCH-t(vt) models where the degrees of freedom, νt, varies over

time in an autoregressive fashion.

• Structural breaks in the underlying return models, such as those investigated by Andreou
and Ghysels (2002), may be of interest as well.

• Hamilton and Jorda (2002) have recently introduced a class of dynamic hazard models.
Exploring these for the purpose of backtesting could be interesting.

Finally, before even venturing into the backtesting of actual risk models it may be useful

to conduct a more basic Monte Carlo analysis drawing violation sequences and duration data

directly. Specifically, if the violation sequence is generated by a first-order Markov process, what

is then the power of the different tests? Conversely, if the violation sequence is constructed from

simulated duration data with dependence, then what would the power of the different tests be?
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6.2 Backtesting Tail Density Forecasts

The choice of Value-at-Risk as a portfolio risk measure can be criticized on several fronts. Most

importantly, the quantile nature of the V aR implies that the shape of the return distribution

to the left of the left is ignored. Particularly in portfolio’s with highly nonlinear distributions,

such as those including options, this shortcoming can be crucial. Theoreticians have criticized

the V aR measure both from a utility-theoretic perspective (Artzner et al, 1999) and from a

dynamic trading perspective (Basak and Shapiro, 2000). Although some of these criticisms have

recently been challenged (Cuoco, He, and Issaenko, 2001), it is safe to say that risk managers

ought to be interested in knowing the entire distribution of returns, and in particular the left

tail. Backtesting distributions rather than V aRs then becomes important.

Consider the standard density forecast evaluation approach7 of calculating the uniform trans-

form variable

Ut = Ft(Rt)

where Ft(∗) is the a priori density forecast for time t. The null hypothesis that the density

forecast is optimal corresponds to

Ut ∼ i.i.d. Uniform(0, 1)

Berkowitz (2001) argues that the bounded support of the uniform variable renders standard

inference difficult. One is forced to rely on nonparametric tests which have notoriously poor

small sample properties. He suggests a simple transformation using the inverse normal c.d.f.

Zt = Φ−1 (Ut)

after which the hypothesis

Zt ∼ i.i.d. Normal(0, 1)

can easily be tested.

Berkowitz further argues that confining attention to the left tail of the distribution has par-

ticular merit in the backtesting of risk models where the left tail contains the largest losses, which

are most likely to impose bankruptcy risk. He defines the censored variable

Z∗t =

(
Zt, if Rt < V aRt

Φ−1 (V aRt) , else

and tests the null that

Z∗t ∼ Censored Normal(0, 1, V aRt)

7See for example Diebold, Gunther and Tay (1998).
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We note first that Berkowitz (2001) only tests the unconditional distribution of Z∗t . The

information in the potential clustering of the V aR exceedences is ignored.

Second, note that the censored variable complication is not needed. If we want to test that

the transforms of the p100 largest losses are themselves uniform, then we can simply multiply the

subset of the uniform by 1/p, apply the transformation and test for standard normality again.8

That is

U∗∗i =

(
Ut/p, if Rt < V aRt

Else not defined

We then have that

Z∗∗i = Φ−1 (U∗∗i ) ∼ i.i.d. Normal(0, 1)

Note that due to the censoring there is no notion of time in the sequence Z∗∗i . We might

want to make a joint analysis of both Z∗∗i and the duration between violations Di. To do this

we would like to write a joint density for these two processes under the alternative. We know

that under the null hypothesis that the risk model is correctly specified the Z∗∗i should be i.i.d.

N(0, 1), Di should be i.i.d. exponential with mean 1/p, and the processes should be independent.

The question is how to write a joint density for these two processes as the alternative hypothesis

knowing that, for example, the marginal p.d.f. of Di is a Weibull and some other p.d.f. for Z∗∗i ?

Copulas provide a useful tool for doing so.

A (bivariate) copula is a function C from [0; 1]× [0; 1] to [0; 1] with the following properties:

1. For every u, v in [0; 1],

C(u, 0) = 0 = C(0, v)

and

C(u, 1) = u and C(1, v) = v;

2. For every u1, u2, v1, v2 in [0; 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0

In order to explain how copulas can be used we apply Sklar’s theorem (Nelsen, 1998), which

states: Let H be a joint distribution function with margins F and G. Then there exists a copula

C such that for all x, y in R,
H(x, y) = C(F (x), G(y)).

If F and G are continuous then C is unique. Conversely, if C is a copula and F and G are

distribution functions then H is a joint distribution function with marginal densities F and G.

8We are grateful to Nour Meddahi for pointing this out.
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So if we have two densities under the alternative (e.g. f(Di) and g(Z∗∗i )) then we can easily

construct a joint density by applying a copula. Suppose the considered bivariate copula C(u, v; θ)

is a function of a unique parameter θ and that we have C(u, v; θ0) = uv and C(u, v; θ) 6= uv for

θ 6= θ0. This gives us a basis for a test because C(F (x), G(y); θ0) = F (x)G(y) means that x and

y are independent.

An example of such a copula is the Ali-Mikhail-Haq family of copulas where

C(u, v; θ) =
uv

1− θ(1− u)(1− v)
; θ ∈ [−1, 1]

and we have C(u, v; θ) = uv if θ = 0. A possible alternative hypothesis could be that Di is i.i.d.

Weibull(a, b), Z∗∗i is i.i.d. N(µ, σ2) and C(u, v; θ) is from the Ali-Mikhail-Haq family of copulas.

We could then test

H0 : a = p, b = 1, µ = 0, σ = 1, θ = 0

H1 : at least one of these equalities does not hold

in a likelihood ratio framework similar to the one considered for the V aR tests above. We plan

to the pursue the implementation of such tests in future work.

7 Summary

We have presented a new set of procedures for backtesting risk models. The chief insight is

that if the V aR model is correctly specified for coverage rate, p, then the conditional expected

duration between violations should be a constant 1/p days. We suggest various ways of testing

this null hypothesis and we conduct a Monte Carlo analysis which compares the new tests to those

currently available. Our results show that in many of the situations we consider, the duration

based tests have much better power properties than the previously suggested tests. The size

of the tests is easily controlled through finite sample p-values, which we calculate using Monte

Carlo simulation.

The immediate potential extensions to our Monte Carlo results are many. We could consider

alternative data generating processes for returns and alternative risk models. Allowing for re-

alistic nonstationarities such as structural breaks in the return process could be interesting as

well.

The majority of financial institutions use V aR as a risk measure, and many calculate VaR

using the so-called Historical Simulation approach. While the main focus of our paper has thus

been backtesting V aRs from Historical Simulation, we also suggest extensions to density and

density tail backtesting.
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Figure 1

Value-at-Risk Exceedences

From Six Major Commercial Banks

Berkowitz and O’Brien (2002)
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Figure 2

GARCH-t(d) Simulated Portfolio Returns with

1% and 5% Value-at-Risk from Historical Simulation with Te = 500
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Figure 3

GARCH-t(d) Simulated Portfolio Returns with

Exeedences of 1% V aRs from Historical Simulation with Te = 500

Reported in Standard Deviations of Returns
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Figure 4

Hazard Functions of Duration between V aR Violations
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Figure 5

Histograms of Duration between V aR Violations
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Table 1: Empirical Power in Independence Tests: Historical Simulation with Te = 500

Significance Level: 1% Significance Level: 5% Significance Level: 10%
Coverage Rate: 1% Coverage Rate: 1% Coverage Rate: 1%

Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size

500 0.1190 0.1790 0.1530 500 0.3320 0.3520 0.2510 500 0.4210 0.4690 0.3100

750 0.1450 0.2510 0.1840 750 0.2940 0.4850 0.2560 750 0.4620 0.5840 0.3270

1000 0.1950 0.3800 0.1240 1000 0.3320 0.5900 0.2300 1000 0.4960 0.6730 0.2770

1250 0.2480 0.4840 0.1600 1250 0.3750 0.6750 0.2590 1250 0.5090 0.7550 0.3220

1500 0.2930 0.6030 0.1300 1500 0.4020 0.7550 0.2150 1500 0.5310 0.8200 0.2600

Coverage Rate: 5% Coverage Rate: 5% Coverage Rate: 5%

Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size

500 0.2120 0.2770 0.3290 500 0.3010 0.4560 0.4320 500 0.3600 0.5390 0.4880

750 0.2720 0.4610 0.4030 750 0.3690 0.6410 0.5170 750 0.4420 0.7390 0.5940

1000 0.3090 0.6070 0.4120 1000 0.4090 0.7670 0.5630 1000 0.4920 0.8280 0.6280

1250 0.3970 0.6760 0.5220 1250 0.5530 0.8370 0.6380 1250 0.6720 0.8920 0.6970

1500 0.4190 0.7650 0.4840 1500 0.6360 0.8970 0.6180 1500 0.7220 0.9330 0.6800



Table 2: Empirical Power in Independence Tests: Historical Simulation with Te = 250

Significance Level: 1% Significance Level: 5% Significance Level: 10%
Coverage Rate: 1% Coverage Rate: 1% Coverage Rate: 1%

Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size

500 0.0990 0.1040 0.0720 500 0.2460 0.2560 0.1540 500 0.2830 0.3530 0.2030

750 0.0940 0.0890 0.0560 750 0.2340 0.2880 0.1100 750 0.3050 0.4100 0.1650

1000 0.1110 0.1690 0.0420 1000 0.2720 0.3480 0.1100 1000 0.3750 0.4800 0.1430

1250 0.1390 0.2240 0.0240 1250 0.2990 0.4620 0.0700 1250 0.4080 0.5630 0.1120

1500 0.1880 0.3350 0.0180 1500 0.3200 0.5360 0.0590 1500 0.4610 0.6370 0.0960

Coverage Rate: 5% Coverage Rate: 5% Coverage Rate: 5%

Test: Markov Weibull EACD Test: Markov Weibull EACD Test: Markov Weibull EACD

Sample size Sample size Sample size

500 0.1970 0.3030 0.2990 500 0.2830 0.4660 0.4310 500 0.3480 0.5520 0.4780

750 0.2540 0.4230 0.3510 750 0.3720 0.6360 0.4790 750 0.4100 0.7300 0.5380

1000 0.3060 0.5670 0.3470 1000 0.4150 0.7420 0.4750 1000 0.5070 0.8170 0.5340

1250 0.2980 0.6520 0.3570 1250 0.4890 0.8110 0.4880 1250 0.6070 0.8680 0.5380

1500 0.3700 0.7300 0.3830 1500 0.6020 0.8770 0.5280 1500 0.7120 0.9150 0.6130




