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Résumé / Abstract 

 
Dans cet article, nous proposons plusieurs tests de spécification valides pour des échantillons finis 
dans le cadre de régression linéaires multivariées (RLM), avec des applications à des modèles 
d’évaluation d’actifs. Nous nous concentrons sur les déviations par rapport à l’hypothèse d’erreurs 
i.i.d. univariée ou multivariée, pour des distributions d’erreurs gaussiennes et non gaussiennes. Les 
tests univariés étudiés prolongent les procédures exactes existantes en permettant des paramètres non 
spécifiés dans la distribution des erreurs (e.g., le nombre de degrés de liberté dans le cas de la 
distribution de Student). Les tests multivariés sont basés sur des résidus standardisés multivariés qui 
assurent l’invariance par rapport aux coefficients RLM et à ceux de la matrice de covariance des 
erreurs. Nous considérons des tests contre la dépendance sérielle, contre la présence d’effets GARCH 
multivariés et des tests de signes contre l’asymétrie. Les procédures proposées sont des versions 
exactes des tests de Shanken (1990) qui consistent à combiner des tests de spécification univariés. 
Spécifiquement, nous combinons des tests entre équations en utilisant une approche de test de Monte 
Carlo (MC), ce qui permet d’éviter des bornes de type Bonferroni. Étant donné que les tests dans un 
contexte non gaussien ne sont pas pivotaux, nous appliquons une approche de test de Monte Carlo 
maximisé [Dufour (2002)] où la valeur p simulée pour l’hypothèse testée (qui dépend de paramètres de 
nuisance) est maximisée (par rapport aux dits paramètres de nuisance) dans le but de contrôler le 
niveau des tests. Nous appliquons les tests proposés à un modèle d’évaluation d’actifs qui comprend 
un taux d’intérêt sans risque observable et utilise les rendements de portefeuilles mensuels de titres 
inscrits à la bourse de New York, sur des sous-périodes de cinq ans allant de janvier 1926 à décembre 
1995. Nos résultats révèlent que les tests univariés exacts présentent des problèmes de dépendance 
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sérielle, d’asymétrie et d’effets GARCH statistiquement significatifs dans certaines équations. 
Cependant ces problèmes s’avèrent moins importants, lorsque l’on tient compte de la dépendance entre 
équations. De plus, les écarts importants par rapport à l’hypothèse i.i.d. sont moins évidents une fois 
que l’on considère des erreurs non gaussiennes. 

 
Mots clés : modèle d’évaluation d’actifs financiers; CAPM; efficacité moyenne-variance; 
nonnormalité; modèle de régression multivarié; hypothèse uniforme linéaire; test de Monte 
Carlo; bootstrap; paramètre de nuisance; test de spécification; diagnostics; GARCH; test 
du ratio des variances. 
 
 

In this paper, we propose several finite-sample specification tests for multivariate linear 
regressions (MLR) with applications to asset pricing models. We focus on departures from the 
assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-
Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by 
allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case 
of the Student t distribution). The multivariate tests are based on properly standardized multivariate 
residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial 
correlation, tests for multivariate GARCH and sign-type tests against general dependencies and 
asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) 
which consist in combining univariate specification tests. Specifically, we combine tests across 
equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based 
tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the 
MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with 
respect to these nuisance parameters) to control the tests significance level. The tests proposed are 
applied to an asset pricing model with observable risk-free rates, using monthly returns on New York 
Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results 
reveal the following. Whereas univariate exact tests indicate significant serial correlation, 
asymmetries and GARCH in some equations, such effects are much less prevalent once error 
crossequation covariances are accounted for. In addition, significant departures from the i.i.d. 
hypothesis are less evident once we allow for non-Gaussian errors. 

  
Keywords: capital asset pricing model; CAPM; mean-variance efficiency; non-normality; 
multivariate linear regression; uniform linear hypothesis; exact test; Monte Carlo test; 
bootstrap; nuisance parameters; specification test; diagnostics; GARCH; variance ratio 
test. 
 
Codes JEL : C3; C12; C33; C15; G1; G12; G14. 
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1. Introduction

The multivariate linear regression (MLR) model is certainly one of the most basic and widely used
model in finance, econometrics and statistics in general [see Rao (1973, Chapter 8), Anderson
(1984, chapters 8 and 13), Kariya (1985), Dufour and Khalaf (2002d), and the references therein].
Well known financial applications include: (i) tests of portfolio efficiency in the context of the cap-
ital asset pricing model (CAPM) [see for example: Gibbons (1982), Shanken (1986), MacKinlay
(1987), Barone-Adesi (1986), Gibbons, Ross and Shanken (1989, GRS), Affleck-Graves and Mc-
Donald (1989), Shanken (1990), Zhou (1991), Zhou (1993), Zhou (1995), Fama and French (1993,
1995), Shanken (1996), Campbell, Lo and MacKinlay (1997, Chapter 5), Stewart (1997), Velu and
Zhou (1999), Chou (2000), Groenwold and Fraser (2001), and Beaulieu, Dufour and Khalaf (2001b,
2001a)]; (ii) spanning tests [see Jobson and Korkie (1982, 1989) and Kan and Zhou (2001)]; and
(iii) event studies [see Binder (1985) and Schipper and Thompson (1985)].

A common feature of such models consists in assuming that the disturbances (or the errors) in
different equations are correlated across equations, but otherwise constitute independent identically
distributed (i.i.d.) random vectors. Of course, violation of the latter assumption can affect the results
of various tests and inferences based on the model (such as mean-variance efficiency or spanning
tests). This underscores the importance of performing diagnostics on such multivariate models.

As emphasized by Kroner and Ng (1998), the existing literature on multivariate diagnostics is
sparse compared to the univariate case. Perhaps because of this, diagnostic tests in empirical MLR-
based financial studies are often conducted on an equation by equation basis. Although univariate
tests can provide some guidance, contemporaneous correlation of disturbances entails that statistics
from individual equations are not independent. As a result, combining test decisions over all equa-
tions raises size control problems, so the need for joint testing naturally arises; see Richardson and
Smith (1993) and Shanken (1990).

In this context, joint diagnostics are typically based either on asymptotic approximations or on
Bonferroni-type bounds. The procedures suggested following the first approach involve test statis-
tics which formally incorporate cross-sectional dependence yet are asymptotically free of nuisance
parameters; see, for example, Godfrey (1988), Richardson and Smith (1993) and the recent litera-
ture on multivariate GARCH, which may be traced back to Engle and Kroner (1995) and Kroner
and Ng (1998). Although this may lead to convenient test procedures, the fact remains that cross-
equation correlations can still affect the null distributions of the test statistics in finite samples. In
systems with many equations (e.g., many portfolios), the number of correlations can be quite large
relative to the sample size, leading to serious degrees-of-freedom losses and size distortions. As
a result, asymptotic approximations perform poorly in finite samples; for references and simula-
tion evidence, see Shanken (1996, Section 3.4.2), Campbell et al. (1997, Chapter 5), and Dufour
and Khalaf (2002b, 2002d, 2002c). Alternatively, Bonferroni-based bound joint tests require one
to divide the significance level of each individual test by the number of tests [see Dufour (1990),
Shanken (1990), Dufour and Torrès (1998), Dufour and Khalaf (2002b)]. While this can guard
against spurious rejections, it can also cause severe power losses if the MLR includes many equa-
tions.

Despite the above problems, very few finite sample exact specification tests have been proposed
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for MLR models. One exception includes work on testing the independence between the distur-
bances in different equations [see Harvey and Phillips (1982) and Dufour and Khalaf (2002b)]. But
this problem is relatively simple, for the null hypothesis sets the error covariances to zero. The
basic difficulty one meets here consists in allowing for an unknown contemporaneous covariance
matrix which involves a rapidly growing number of nuisance parameters as the number of equations
increases.

In this paper, we consider the problem of testing the specification of MLR models. Of course,
the form of a model can be tested against an infinity of alternative formulations or specification
errors. Here we focus on the following basic deviations from the MLR specification: (1) detecting
the presence of GARCH-type heteroskedasticity; (2) detecting (linear) serial dependence; (3) testing
whether the errors follow a symmetric distribution. For these three problems, we propose procedures
based on least squares residuals, hence computationally simple. In order to avoid the nuisance
parameter problem raised by the unknown error covariance matrix, we apply a multivariate rescaling
transformation which eliminates the unknown covariance matrix from the residual distribution. In
this way, we getmultivariate standardized residualswhich arelocation-scale invariant, hence do
not depend on the (unknown) regression coefficients or the error covariance matrix.

The tests against the presence of GARCH effects include multivariate extensions of the univari-
ate procedures proposed by Engle (1982), Lee (1991) and Lee and King (1993). The tests for linear
serial dependence are multivariate versions of the portmanteau Ljung-Box [Ljung and Box (1978)]
and variance ratio [Lo and MacKinlay (1988, 1989)] tests. For testing symmetry, we introduce a
sign procedure. All these tests are applied to properly standardized residuals. None of the exact
procedures is based on a Bonferroni bound,i.e. they do not require one to divide the significance
level by the number of individual equations.

To overcome multiple-test concerns as well as the fact that the test statistics considered have
complicated null distributions which can be extremely difficult to evaluate analytically, we apply
the Monte Carlo (MC) test technique [Dwass (1957), Barnard (1963), Dufour and Kiviet (1996),
Dufour and Kiviet (1998)], which provides randomized exact versions of the tests considered. The
MC simulation-based procedure yields an exact test whenever the joint distribution of the individual
test statistics does not depend on unknown nuisance parameters (i.e., the test statistics are jointly
pivotal) under the null hypothesis and general parametric distributional assumptions. The fact that
the relevant analytical distributions are quite complicated is not a problem: all we need is the possi-
bility of simulating the relevant test statistics under the null hypothesis. The combined procedures
described also provide exact versions of those applied by Shanken (1990) without the need to use
bounds.

Furthermore, our methodology deals, from a finite-sample perspective, with non-normal errors.
Formally, this allows one to test for time varying variances or asymmetries, with fat-tailed error
distributions such as the Studentt. This approach is new, even in the case of univariate tests. Indeed,
in this case, the recent literature on simulation based testing [see e.g. Dufour, Khalaf, Bernard and
Genest (2001), Dufour and Khalaf (2002a) for univariate residuals based heteroskedasticity and
serial correlation tests] allows one to deal with non-Gaussian disturbances, if the error distribution
is fully specified. For instance, in the case of the Studentt distribution, with an unknown degree-
of-freedom parameter, it will typically appear in the null distribution of the diagnostic test statistic.
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In the present paper, we extend the procedures proposed in Dufour et al. (2001) and Dufour and
Khalaf (2002a) to account for unspecified parameters in the hypothesized error distribution. To
control significance level given such difficulties, we apply a “maximized MC” (MMC) test [see
Dufour (2002)], where the MCp-value for the tested hypothesis (which depends on the nuisance
parameter) is maximized over the relevant nuisance parameter set.1

The procedures proposed are applied to a typical multivariate market-model based on New York
Stock Exchange (NYSE) portfolios, constructed from the University of Chicago Center for Research
in Security Prices (CRSP) data base for the period 1926-1995. In Beaulieu, Dufour and Khalaf
(2001b), this data set is analyzed in view of testing mean-variance efficiency. Here, we assess the
specification using the procedures described above. In particular, we perform finite-sample tests _
both univariate and multivariate _ of the assumption of i.i.d. errors against the presence of GARCH
effects [using joint Engle and Lee-King tests] as well as against linear serial dependence [using
joint Ljung-Box and variance ratio tests]. This allows us to compare and contrast evidence from
both approaches. Furthermore, the sign procedure is applied to test symmetry.

Our empirical results reveal the following. Whereas univariate exact tests indicate some serial
correlation and GARCH effects, the multivariate tests indicate that such effects are less prevalent
(at least in the time frames considered) once the cross-equation error covariances are considered.
This underscores the merits of formal multivariate testing approaches. More importantly, signifi-
cant departures from thei.i.d. hypothesis are less evident when we allow for non-Gaussian errors.
This illustrates the importance of formally accounting for error distributions from a finite-sample
perspective.

The paper is organized as follows. Section 2 sets the framework and presents our basic exact
distributional results. In Section 3, we present our univariate and multivariate diagnostic criteria.
Section 4 reports our empirical analysis. We conclude in Section 5.

2. Framework and exact distributional theory

Many asset pricing models take the form of a system of correlated regression equations, i.e.

Y = XB + U (2.1)

whereY = [Y1, ... , Yn] is a T × n matrix of observations onn dependent variables,X is an
T × k full-column rank matrix ,B = [B1, . . . , Bn] is ak× n matrix of unknown coefficients and
U = [U1, . . . , Un] = [V1, . . . , VT ]′ is aT × n matrix of random disturbances. For example, a
one-factor asset pricing model can be written:

rit = ai + bir̃Mt + uit , t = 1, . . . , T, i = 1, . . . , n , (2.2)

1For further discussions of MMC tests in econometrics, see Dufour and Khalaf (2001, 2002c). When nuisance pa-
rameters appear in the null distribution of a test statistic, a test isexactat levelα if the largest rejection probability over
the nuisance parameter space consistent with the null hypothesis is not greater thanα [see Lehmann (1986, sections 3.1,
3.5)].
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whererit = Rit −RF
t , r̃Mt = R̃Mt −RF

t , Rit is the returns on securityi for periodt, R̃Mt are the
returns on the market portfolio under consideration,RF

t is the riskless rate of return(i = 1, . . . , n,
t = 1, . . . , T ), anduit is a random disturbance. Clearly, this model is a special case of (2.1) where

Y = [r1, ... , rn] , ri = (ri1, ... , riT )′ , X = [ιT , r̃M ] ,
ιT = (1, . . . , 1)′ , r̃M = (r̃M1, . . . , r̃MT )′ , Ui = (ui1, ... , uiT )′ .

Following Dufour and Khalaf (2002d) and Beaulieu et al. (2001b), we restrict the error distri-
bution as follows:

Vt = JWt, t = 1, . . . , T, (2.3)

whereJ is an unknown non-singular lower triangular matrix, the vectorvec(W1, . . . , WT ) has a
distributionF(ν), which is specified up to an unknown nuisance parameterν. Let

Σ = JJ ′, W = [W1, . . . , WT ]′ = [w1, . . . , wn] . (2.4)

Assumption (2.3) entails thatW = U(J−1)′ and, when the moments ofF(.) exist,Σ is the covari-
ance ofVt. The least squares estimate ofB is

B̂ = (X ′X)−1X ′Y (2.5)

and the corresponding residual matrix is

Û =
[
Û1, . . . , Ûn

]
= Y −XB̂ = MY = MU (2.6)

whereM = I −X(X ′X)−1 X ′. Note that the Gaussian-based quasi maximum likelihood estima-
tors for this model arêB andΣ̂ = Û ′Û/T.

2.1. Exact invariance results

The test statistics we consider are based on the followingmultivariate standardized residualmatrix

W̃ = Û S−1

Û
(2.7)

whereS
Û

is the Cholesky factor of̂U ′Û , i.e. S
Û

is the (unique) upper triangular matrix such that

Û ′Û = S′
Û
S

Û
,

(
Û ′Û

)−1 = S−1

Û

(
S−1

Û

)′
.

The validity of our proposed test procedures relies on the following decomposition ofW̃ .

Theorem 2.1 Under (2.1), and for all error distributions compatible with(2.3), the standardized
residual matrix defined in(2.7) satisfies the identity

W̃ = Û S−1

Û
= Ŵ S−1

Ŵ
(2.8)
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whereŴ = MW andS
Ŵ

is the Cholesky factor of̂W ′Ŵ , and thus follows a distribution which
does not depend onB andJ.

For a proof and further discussion, see Dufour, Khalaf and Beaulieu (2002). The latter result
implies that̃W has a distribution which is completely determined by the distribution ofW givenX.
This also holds for all statistics which depend on the data only throughW̃ .

2.2. Exact Monte Carlo test procedure

The above invariance results can be used to obtain Monte Carlop-values for any test statistic asso-
ciated with (2.3), so long as the statistic considered, sayS(Û) whereÛ is the residual matrix (2.6),
can be written as a function ofW andX :

S(Û) = S (W, X) (2.9)

whereW is defined by (2.3). The Monte Carlo (MC) test procedure goes back to Dwass (1957) and
Barnard (1963); extensions to the nuisance parameter dependent case are given in Dufour (2002).
The procedures we apply in this paper can be summarized as follows, given a right tailed test statistic
of the form (2.9).

Let S0 denote the observed value of test statistic calculated from the observed data set. Forν
given, drawW j = [W j

1 , . . . , W j
n], j = 1, . . . , N , as in (2.3), and compute

Sj = S(W j , X), j = 1 , . . . , N .

Given the rankR̂N (S0 | ν) of S0 in the seriesS0, S1, ... , SN , let

p̂N (S0 | ν) =
NĜN (S0 | ν) + 1

N + 1
, ĜN (S0 | ν) =

R̂N (S0 | ν)− 1
N − 1

. (2.10)

The MC critical region iŝpN (S0 | ν) ≤ α, 0 < α < 1 andα(N + 1) is an integer.
Under the null hypothesis,

P [p̂N (S0 | ν) ≤ α] = α whenν = ν0 (ν0 known). (2.11)

Whenν is an unknown nuisance parameter, we can use the following level-correct critical MC test
which we will denote maximized MC (MMC) test defined by the critical region

sup
ν ∈ Φ0

[p̂N (S0 | ν)] ≤ α (2.12)

whereΦ0 satisfies the null hypothesis under test [see Dufour (2002)].2

2This procedure is based on the following test property [Lehmann (1986)]: when the null distribution of test statistic
depends on nuisance parameters [ν in this case], anα-level is guaranteed when the largest p-value (overall values ofν
consistent with the null hypothesis) is referred toα. The MMC test method works exactly in this way: the (simulated)
p-value function conditional onν is numerically maximized (with respect toν); the test is significant if the largestp-value
is less than or equal toα.
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In Dufour (2002) and Dufour and Kiviet (1996), a modified MMC procedure denoted
confidence-set-based MMC (CSMMC) is also proposed. The method involves two stages: (1) an
exact confidence set is built forν, and (2) the MCp-value [̂pN (S0|ν) in this case] is maximized
over all values ofν in the latter confidence set; see also Beaulieu et al. (2001b, 2001a). If an overall
α-level test is desired, then the pre-test confidence set and the MMC test should be applied with
levels(1 − α1) andα2, respectively, so thatα = α1 + α2. In the empirical application considered
next, we useα1 = α2 = α/2. We also use, following Beaulieu et al. (2001b, 2001a), a confidence
set designed to incorporate information on the goodness-of-fit of the hypothesized error distribution.
See Appendix A for a summarized description of the estimation procedure; a detailed presentation
is available in Beaulieu et al. (2001b).

3. Multivariate specification tests

In this section, we use the above results to derive multivariate specification tests. We first present
our general approach to multivariate testing, with applications to GARCH, serial dependence and
sign tests. The proposed tests take the form (2.9) so are formally valid for any parametric null
hypothesis of the type (2.3). In our empirical application [see Section (4)], we focus on the normal
and multivariatet(κ) distributions, whereκ is the number of degrees of freedom. We also consider
(2.3) with possibly unknown parameters.

3.1. Generalized diagnostics

Assumptions routinely checked in multivariate regressions are in many ways similar to those rele-
vant in a univariate regressions, which include: (i) autocorrelated disturbances, (ii) heteroskedastic
disturbances, (iii) lack-of-fit of the error distribution, (iv) parameter constancy. If one pursues a
univariate approach, standard tests for these hypotheses may be applied to the residuals of each
equation of (2.1), which we write

Yi = XBi + Ui (3.1)

following the notation of Section 2. In this context, it is natural to consider the univariate counter-
parts of (2.3)-(2.4):

Ui = σwi , wi ∼ F(ν) , (3.2)

where the distributionF(ν) of the vectorwi is specified up to an unknown nuisance parameterν.
In this case, the argument of Section (2.2) implies that any statistic of the form

Si(Ûi) = Si (wi, X) , (3.3)

whereÛi is the residual vector andwi satisfies (3.2), yields an exact MC univariate test conditional
on ν. In Dufour, Farhat, Gardiol and Khalaf (1998), Dufour and Khalaf (2001), Dufour et al.
(2001) and Dufour and Khalaf (2002a), we show that standard residual-based test statistics for
heteroskedasticity, non-normality, autocorrelation and structural breaks are of the form (3.3), for
any parametric error distribution (Gaussian or non-Gaussian) specified up to an unknown scale
parameter (σ in our notation); this corresponds to (3.2) with knownν. Furthermore, in Dufour
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et al. (2001), we argue that the latter property underlies the validity of diagnostic tests based on
regression residuals (rather than observables).3 This paper presents further extensions to the case of
unknownν, applying the MMC or the CSMMC procedure. We note that these extensions are new
to econometrics even from a univariate perspective.

Extensions to multivariate setups can be pursued imposing e.g. vector-autoregressive based pro-
cedures; see, for example, Engle and Kroner (1995), Deschamps (1996). However, it is clear that
such parametrization may raise further identification and nuisance parameter problems. Alterna-
tively, procedures which combine univariate standard tests [see e.g. Shanken (1990)] have been
appealing to practitioners, because of parsimony and identification ease. Here we follow the latter
approach, with specific modifications to ensure exactness.

Let w̃i denote the columns of the matrix̃W defined by (2.7). Obtain standardized versions of the
univariate tests denotedSi(Ûi), i = 1, . . . , n, replacingÛi by w̃i in the formula for these statistics.
These modified statistics, denoted,Ŝi(w̃i), i = 1, . . . , n, satisfy the conditions of Theorem2.1by
construction. Hence, under (2.3), theirjoint distribution does not depend on the error covariances.
To obtain combined inference across equations, we consider the following combined statistic:

Smin(W̃ ) = 1− min
1≤i≤n

[
p
(
Ŝi(w̃i)

)]
(3.4)

wherep
(
Ŝi(w̃i)

)
refers top-values; these may be obtained applying a MC test method, or using

asymptotic null distributions [to cut execution time]. The underlying intuition here is to reject
the null hypothesis if at least one of the individual (standardized) tests is significant; for further
reference on tests combined in this way, see Dufour and Khalaf (2002b), Dufour et al. (2001) and
Dufour and Khalaf (2002a). By construction, the latter statistic(3.4) takes the form (2.9). Then we
can apply the MMC or CSMMC test procedure to the combined statistic imposing (2.3).

The overall procedure remains exact even if approximate individualp-values are used, if the
p-value of the combined test is obtained applying the MC test technique. Indeed, the property
underlying exactness is joint pivotality, which is achieved by using properly standardized residuals.
In what follows, we give the formulae for the tests considered in our empirical analysis.

3.2. Joint tests for GARCH effects

We consider procedures based on the standard GARCH tests [e.g. see Engle (1982), Lee (1991) or
Lee and King (1993)]. The Engle test statistic for equationi, which will be denotedEi is given
by TR2

i , whereT is the sample size,R2
i is the coefficient of determination in the regression of the

equation’s squared OLS residualsû2
it on a constant and̂u2

(t−j),i (j = 1, . . . , q) . Under standard

regularity conditions, the asymptotic null distribution of this statistic isχ2(q). Lee and King (1993)

3To assess the validity of residual based homoskedasticity tests, Godfrey (1996, section 2) defined the notion of
“robustness to estimation effects”. Following Godfrey (1996, section 2), a test is robust to estimation effects if the
asymptotic distribution is the same irrespective of whether disturbances or residuals are used to construct the test statistic.
Our approach to residual based diagnostic tests departs from Godfrey’s asymptotic framework.
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proposed an alternative GARCH test which exploits the one-sided nature ofHA. The test statistic is

LKi =

{
(T − q)

T∑
t=q+1

[
(û2

it/σ̂2
i − 1)

] q∑
j=1

û2
i,t−j

}
/

{
T∑

t=q+1
(û2

it/σ̂2
i − 1)2

}1/2



(T − q)

T∑
t=q+1

(
q∑

j=1
û2

i,t−j

)2

−
(

T∑
t=q+1

(
q∑

j=1
û2

i,t−j

))2




1/2
(3.5)

whereσ̂2
i = 1

T

∑T
t=1 û2

it, and its asymptotic null distribution is standard normal. LetW̃it denote the

elements of the matrix̃W defined by (2.7). As shown in the previous section, we obtain standardized
versions of the univariate Engle and Lee-King test, denotedẼi andL̃Ki, replacingûit by W̃it in
the formula for these statistics. We next construct the following combined statistics:

Ẽ = 1− min
1≤i≤n

[
p
(
Ẽi

)]
(3.6)

L̃K = 1− min
1≤i≤n

[
p
(
L̃Ki

)]
(3.7)

wherep
(
Ẽi

)
andp

(
L̃Ki

)
refer top-values; in the empirical application considered next, we ob-

tained thesep-values using asymptotic null distributions. The MMC or CSMMC technique can be
used to obtainp-values for these tests, as described above.

3.3. Joint serial dependence tests

We focus on two popular criteria which combine empirical residual autocorrelations: (i) the Ljung-
Box portmanteau statistic [Ljung and Box (1978)],

LBi = T (T + 2)
J∑

j=1

ρ̂2
ij

T − j
, (3.8)

and (ii) the variance ratio statistic [Lo and MacKinlay (1988), Lo and MacKinlay (1989)],

V Ri = 1 + 2
J∑

j=1

(1− j

l
)ρ̂ij (3.9)

where

ρ̂ij =

∑T
t=j+1 ûitûi,t−j∑T

t=1 û2
ti

, j = 1, . . . , J. (3.10)

We propose multivariate extensions following the combination procedure of Section 3.1. First we
obtainorthogonalizedversions of the univariate variance ratio and Ljung-Box statistics, denoted
L̃Bi andṼ Ri, replacingûit by W̃it [the elements of̃W , the standardized residuals matrix (2.7)] in
the formula for these statistics; with this modification, the statisticsjoint null (under (2.3)) does not
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depend on the error cross-covariances. Second, we use the combined criteria

Ṽ R = 1− min
1≤i≤n

[
p
(
Ṽ Ri

)]
(3.11)

L̃B = 1− min
1≤i≤n

[
p
(
L̃Bi

)]
(3.12)

wherep
(
Ṽ Ri

)
andp

(
L̃Bi

)
are individualp-values associated with̃LBi andṼ Ri; these are derived

applying approximate null distributions:

(V Ri − 1)
asy∼ N [0, 2(2J − 1)(J − 1)/3J ], (3.13)

LB(J) T→∞∼ χ2(J). (3.14)

Once again, to obtain an exact combinedp-value under (2.3), we can apply the MMC (or the
CSMMC) test procedures to the combined statistic.

3.4. Sign tests against asymmetry

As emphasized in Campbell et al. (1997, Chapter 2), tests based on signs can be useful for assessing
deviations from thei.i.d. errors hypothesis. However, the usual distributional theory underlying
these tests breaks down, in the presence of regression residuals, even in a univariate perspective.
Nevertheless, due to the flexibility of the MC testing method, we show in this section how to extend
such procedures to the context of (3.2). The tests as proposed are not non-parametric; yet they
retain their intuitive appeal. We consider here a sign procedure which can be sensitive to possible
asymmetry of then distribution.

Let PPi refer to the proportion of positive residuals in equationi. To test (3.2) withν = ν0, we
propose the following statistic:

sgi =
∣∣PPi−PPi(ν0)

∣∣ (3.15)

wherePPi(ν0) is a simulation-based estimate of the proportion of positive residuals under (3.2).
The proportion of positive residuals is unchanged if the residuals are multiplied by any positive
constant; hence sgi is scale invariant and can be simulated [in a single equation framework] under
(3.2) as follows. Givenν0, drawN0 realizations ofwi consistent with (3.2); for each draw, construct
the simulated residuals asMwi which yield N0 realizations of the sign statistic. The empirical
average of the latter simulated series givesPPi(ν0). In the same manner, following Section 2.2, a
MC p-value for each statistic can be obtained, conditional onPPi(ν0).

To extend this approach to the multivariate framework, we proceed as described in Section 3.1.
Formally, we obtain standardized versions of the univariate sign tests, denoteds̃gi, replacingûit by
W̃it in their formula. Second, we use the combined criteria

s̃g = 1− min
1≤i≤n

[
p
(
s̃gi

)]
(3.16)

wherep
(
s̃gi

)
are individualp-values associated with̃sgi; these may be derived applying the MC

test technique, drawing residuals [in the formMW ] as in (2.3). Finally, exact MMC (or CSMMC)
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Table 1. Portfolio definitions

Portfolio number Industry Name Two-digit SIC codes
1 Petroleum 13, 29
2 Finance and real estate 60-69
3 Consumer durables 25, 30, 36, 37, 50, 55, 57
4 Basic industries 10, 12, 14, 24, 26, 28, 33
5 Food and tobacco 1, 20, 21, 54
6 Construction 15-17, 32, 52
7 Capital goods 34, 35, 38
8 Transportation 40-42, 44, 45, 47
9 Utilities 46, 48, 49
10 Textile and trade 22, 23, 31, 51, 53, 56, 59
11 Services 72, 73, 75, 80, 82, 89
12 Leisure 27, 58, 70, 78, 79

Note _ This table presents portfolios according to their number and sector as well as the SIC codes included
in each portfolio using the same classification as Breeden, Gibbons and Litzenberger (1989).

p-values are obtained for the joint criterion (3.16).

4. Empirical application

Our empirical analysis focuses on the asset pricing model (2.2) with different distributional assump-
tions for stock market returns. We use nominal monthly returns over the period going from January
1926 to December 1995, obtained from the University of Chicago’s Center for Research in Security
Prices (CRSP).

As in Breeden et al. (1989), our data include 12 portfolios of New York Stock Exchange (NYSE)
firms grouped by standard two-digit industrial classification (SIC). Table 1 provides a list of the
different sectors used as well as the SIC codes included in the analysis.4 For each month the industry
portfolios comprise those firms for which the return, price per common share and number of shares
outstanding are recorded by CRSP. Furthermore, portfolios are value-weighted in each month. We
proxy the market return with the value-weighted NYSE returns, also available from CRSP. The risk-
free rate is proxied by the one-month Treasury Bill rate, also from CRSP. Our results are reported
in Tables 2–3. We report, in addition to the asymptoticp-values [denoted̂p∞] when available, three
MC p-values: (i) the Gaussian based MCp-value [denoted̂pg], (ii) the Studentt based MMCp-
value (maximized over all relevant degrees-of-freedomκ ≥ 2) [denotedp̂a], and (ii) the Student
t based CSMMC [denoted̂pi] (where the maximization is restricted to the degrees-of-freedom not
rejected by a prior 2.5% goodness-of-fit tests); the associated confidence sets are reported in column
1 of Table 2. The results can be summarized as follows.

4Note that as in Breeden et al. (1989), firms with SIC code 39 (Miscellaneous manufacturing industries) are excluded
from the dataset for portfolio formation.
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Table 2. Univariate and Multivariate GARCH Tests

Engle Lee-King
p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1927-1930 Confidence Set 1 .25 .31 .428 .25 .11 .14 .065 .15
3 ≤ κ ≤ 12 2 .85 .86 .879 .78 .89 .89 .998 .84

3 .95 .94 .946 .90 .54 .55 .709 .52
4 .10 .10 .164 .02 .48 .45 .526 .48
5 .11 .14 .259 .05 .17 .11 .046 .16
6 .83 .83 .847 .71 .96 .96 1.00 .93
7 .79 .79 .827 .69 .15 .17 .113 .16
8 .70 .75 .810 .65 .17 .19 .121 .16
9 .70 .74 .797 .65 .45 .49 .574 .45
10 .47 .48 .604 .46 .13 .15 .090 .16
11 .01 .06 .007 .01 .06 .08 .023 .08
12 .10 .11 .217 .04 .04 .07 .013 .07

Joint .04 .11 n.a. .01 .29 .38 n.a. .34
1931-1935 Confidence Set 1 .43 .49 .547 .45 .09 .12 .138 .09

3 ≤ κ ≤ 8 2 .81 .93 .910 .92 .66 .68 .839 .58
3 .90 .97 .951 .92 .07 .06 .057 .08
4 .13 .22 .268 .18 .12 .16 .190 .12
5 .32 .41 .447 .31 .07 .09 .088 .08
6 .76 .87 .849 .82 .34 .38 .547 .33
7 .21 .31 .334 .26 .18 .26 .338 .24
8 .06 .09 .104 .09 .16 .21 .256 .17
9 .87 .96 .939 .94 .20 .29 .382 .24
10 .94 1.0 .987 .99 .19 .26 .352 .24
11 .05 .06 .054 .04 .09 .12 .135 .09
12 .10 .19 .251 .16 .73 .74 .892 .67

Joint .06 .23 n.a. .04 .61 .78 n.a. .79

Note _ Numbers shown are MCp-values.p∞ refers to the test’s asymptoticp-value and̂pg is the Gaussian
based MCp-value. p̂i is CSMMC p-value imposing student t(κ) errors (the method for constructing the
underlying confidence set for the degrees-of-freedomκ is presented in Appendix A).̂pa is the MMCp-value
overall degrees-of-freedom. The individual equation test statistic are: Engle’sTR2 and Lee-King’s statistic
(3.5) defined in Section 3.2; the joint tests are defined in (3.6)-(3.7). n.a. means not available (because
asymptotic critical values have not been derived).
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Table 2(b). Univariate and Multivariate GARCH Tests (continued)

Engle Lee-King
p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1936–1940 Confidence Set 1 .96 .96 .937 .94 .60 .66 .796 .56
4 ≤ κ ≤ 29 2 1.0 1.0 .992 1.0 .87 .87 .994 .84

3 .48 .52 .550 .43 .81 .81 .976 .78
4 .49 .62 .660 .50 .24 .31 .440 .24
5 .48 .52 .563 .50 .12 .17 .232 .13
6 .96 1.0 .986 1.0 .29 .37 .490 .33
7 .18 .23 .281 .24 .86 .89 .997 .85
8 .99 1.0 1.00 1.0 .64 .66 .806 .60
9 .15 .29 .317 .17 .56 .55 .742 .54
10 .99 1.0 .999 1.0 .74 .73 .918 .68
11 .12 .26 .280 .17 .72 .74 .901 .68
12 .72 .85 .886 .79 .20 .25 .357 .21

Joint .16 .33 n.a. .08 .62 .67 n.a. .61
1941–1945 Confidence Set 1 .32 .62 .656 .55 .98 .99 1.00 .95

κ ≥ 5 2 .13 .14 .203 .09 .56 .54 .723 .52
3 .79 .81 .851 .78 .54 .57 .748 .49
4 .11 .10 .128 .05 .87 .85 .993 .84
5 .11 .10 .137 .05 .12 .11 .137 .10
6 .44 .38 .433 .38 .87 .85 .994 .84
7 .21 .40 .457 .15 .16 .15 .187 .12
8 .39 .35 .416 .35 .31 .31 .400 .26
9 .11 .13 .171 .06 .21 .21 .280 .14
10 .52 .53 .561 .45 .13 .13 .166 .10
11 1.0 1.0 .989 .99 .31 .31 .400 .26
12 .73 .65 .673 .65 .74 .80 .959 .67

Joint .90 .90 n.a. .87 1.0 1.0 n.a. .99
1946-1950 Confidence Set 1 .26 .27 .320 .23 .16 .14 .187 .13

4 ≤ κ ≤ 31 2 .66 .68 .729 .64 .59 .64 .791 .53
3 .72 .73 .789 .66 .63 .65 .794 .58
4 .05 .08 .086 .03 .10 .10 .116 .08
5 .52 .54 .598 .49 .52 .28 .398 .58
6 .95 .97 .963 .91 .33 .40 .506 .29
7 .11 .17 .255 .08 .88 .72 .868 .85
8 .61 .61 .679 .60 .10 .10 .116 .08
9 .92 .85 .864 .90 .55 .67 .834 .50
10 .15 .12 .161 .09 .89 .92 .999 .84
11 .28 .18 .282 .20 .81 .76 .943 .77
12 .57 .71 .766 .57 .71 .75 .924 .67

Joint .03 .08 n.a. .01 .81 .83 n.a. .82
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Table 2(c). Univariate and Multivariate GARCH Tests (continued)

Engle Lee-King
p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1951-1956 Confidence Set 1 1.0 1.0 .992 1.0 .83 .83 .987 .77
5 ≤ κ ≤ 34 2 .34 .31 .386 .32 .64 .66 .810 .59

3 .09 .09 .149 .06 .05 .05 .054 .05
4 .99 1.0 .990 .99 .08 .10 .108 .06
5 .42 .47 .510 .42 .77 .76 .933 .69
6 .25 .27 .350 .23 .11 .12 .128 .09
7 .03 .05 .024 .01 .02 .03 .017 .02
8 .29 .29 .367 .26 .11 .12 .127 .10
9 .27 .55 .597 .24 .07 .06 .058 .06
10 .96 .91 .900 .92 .77 .75 .904 .71
11 1.0 1.0 .982 .99 .29 .26 .356 .26
12 .75 .71 .750 .70 .52 .52 .677 .46

Joint .22 .32 n.a. .16 .28 .38 n.a. .37
1956-1960 Confidence Set 1 1.0 1.0 .993 1.0 .66 .70 .839 .60

κ ≥ 5 2 .49 .48 .547 .42 .75 .77 .949 .71
3 .53 .56 .626 .51 .86 .87 .995 .83
4 .57 .61 .640 .52 .63 .66 .820 .57
5 .36 .30 .396 .31 .39 .51 .682 .33
6 .55 .53 .633 .49 .30 .29 .460 .25
7 .44 .46 .531 .39 .03 .03 .014 .02
8 .58 .58 .667 .53 .03 .03 .015 .02
9 .72 .79 .807 .68 .18 .18 .267 .15
10 .33 .33 .424 .28 .90 .91 .999 .89
11 .21 .24 .320 .18 .08 .10 .080 .07
12 .99 .99 .977 .98 .65 .70 .846 .59

Joint 1.0 1.0 n.a. 1.0 .67 .67 n.a. .66
1961-1965 Confidence Set 1 .64 .65 .693 .57 1.0 1.0 1.00 1.0

κ ≥ 7 2 .57 .59 .639 .47 .83 .84 .983 .78
3 .99 .98 .973 .96 .83 .84 .983 .77
4 .27 .30 .350 .25 .71 .73 .892 .66
5 .88 .88 .869 .91 .83 .82 .977 .76
6 .71 .71 .768 .65 .93 .94 1.00 .89
7 .88 .86 .884 .91 .68 .67 .828 .60
8 .12 .10 .147 .07 .76 .79 .963 .73
9 .30 .32 .374 .27 .84 .84 .986 .79
10 .90 .85 .895 .92 .90 .91 .999 .87
11 .15 .14 .185 .10 .49 .50 .684 .43
12 .36 .37 .425 .28 1.0 1.0 1.00 .97

Joint .47 .50 n.a. .36 .25 .25 n.a. .22
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Table 2(d). Univariate and Multivariate GARCH Tests (continued)

Engle Lee-King
p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1966-1970 Confidence Set 1 .56 .57 .619 .49 .09 .09 .106 .09
κ ≥ 5 2 .83 .83 .853 .79 .84 .83 .987 .79

3 .88 .86 .870 .85 .56 .57 .749 .52
4 .51 .53 .586 .46 .09 .09 .118 .09
5 .01 .05 .005 .01 .15 .15 .182 .11
6 .45 .45 .491 .37 .95 .96 1.00 .90
7 .28 .29 .339 .23 .86 .86 .995 .83
8 .30 .30 .355 .27 .91 .91 .999 .86
9 .25 .23 .277 .20 .65 .68 .827 .58
10 .04 .07 .056 .02 .51 .52 .701 .47
11 .61 .57 .606 .51 .10 .12 .129 .09
12 .05 .08 .092 .04 .68 .71 .850 .62

Joint .08 .23 n.a. .05 .30 .30 n.a. .29
1971-1975 Confidence Set 1 .06 .09 .100 .06 .10 .11 .164 .10

4 ≤ κ ≤ 28 2 .25 .25 .271 .21 .05 .05 .046 .04
3 1.0 1.0 .999 1.0 .28 .28 .381 .22
4 .42 .42 .464 .39 .02 .02 .007 .01
5 .92 .92 .915 .89 .14 .16 .229 .11
6 .97 .98 .954 .95 .21 .22 .291 .15
7 .94 .95 .940 .91 .21 .22 .302 .18
8 .50 .50 .563 .46 .82 .83 .980 .78
9 .35 .38 .416 .33 .62 .63 .774 .58
10 .12 .15 .184 .11 .05 .05 .044 .04
11 1.0 .99 .964 .99 .37 .40 .520 .34
12 .61 .63 .673 .53 .11 .11 .173 .10

Joint .36 .48 n.a. .32 .26 .28 n.a. .24
1976-1980 Confidence Set 1 .25 .25 .286 .20 .03 .04 .014 .03

4 ≤ κ ≤ 17 2 .27 .33 .393 .26 .93 .94 1.00 .89
3 .27 .27 .320 .23 .06 .06 .067 .06
4 .15 .16 .210 .14 .05 .05 .029 .03
5 .01 .02 .002 .01 01 .01 .000 .01
6 .04 .07 .045 .01 .06 .07 .072 .06
7 .04 .09 .066 .01 .01 .01 .000 .01
8 .82 .85 .867 .82 .13 .16 .206 .12
9 .42 .42 .496 .40 .13 .16 .209 .10
10 .15 .15 .196 .13 .59 .59 .753 .52
11 .30 .36 .420 .26 .90 .90 .998 .87
12 .18 .22 .257 .17 .27 .31 .420 .23

Joint .03 .11 n.a. .01 .03 .03 n.a. .01
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Table 2(e). Univariate and Multivariate GARCH Tests (continued)

Engle Lee-King
p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1981-1985 Confidence Set 1 .70 .72 .751 .67 .96 .96 1.00 .93
5 ≤ κ ≤ 33 2 .41 .41 .465 .34 .42 .42 .577 .39

3 .80 .78 .794 .76 .99 1.0 1.00 .95
4 .15 .16 .176 .10 .72 .74 .902 .65
5 .11 .08 .102 .07 .19 .21 .262 .13
6 .03 .06 .016 .01 .21 .21 .270 .16
7 .01 .02 .002 .01 .57 .57 .728 .47
8 .11 .11 .156 .08 .25 .23 .332 .20
9 .62 .68 .692 .61 .08 .09 .081 .07
10 .94 .94 .914 .90 .37 .41 .552 .34
11 .65 .61 .652 .63 .95 .96 1.00 .93
12 .12 .18 .203 .12 .85 .87 .990 .84

Joint .08 .21 n.a. .06 .12 .14 n.a. .12
1986-1990 Confidence Set 1 .02 .06 .021 .01 .50 .56 .673 .50

5 ≤ κ ≤ 41 2 .44 .41 .557 .35 .12 .12 .091 .09
3 .46 .47 .598 .40 .76 .81 .930 .67
4 .50 .50 .654 .45 .31 .31 .355 .28
5 .59 .60 .727 .57 .97 .97 1.00 .96
6 .86 .85 .879 .82 .58 .64 .746 .57
7 .37 .41 .558 .32 .94 .94 .996 .89
8 .62 .65 .760 .59 .88 .88 .981 .80
9 .59 .60 .719 .58 .96 .96 .999 .95
10 .14 .16 .277 .12 .72 .79 .895 .63
11 .98 .99 .981 .97 .43 .43 .508 .38
12 .06 .12 .152 .04 .81 .87 .969 .77

Joint .14 .23 n.a. .06 .47 .47 n.a. .47
1991-1995 Confidence Set 1 .71 .71 .759 .64 .31 .31 .370 .27

κ ≥ 15 2 .60 .61 .667 .54 .03 .03 .020 .02
3 .76 .75 .803 .73 .96 .96 1.00 .95
4 .71 .68 .730 .61 .03 .03 .020 .02
5 .99 .99 .974 .98 .74 .75 .892 .70
6 .40 .44 .494 .36 .85 .85 .988 .80
7 .36 .39 .419 .27 .02 .02 .003 .01
8 .50 .53 .584 .44 .68 .68 .834 .64
9 .79 .81 .848 .76 .09 .09 .106 .06
10 .94 .94 .933 .88 .69 .70 .794 .60
11 .52 .53 .598 .48 .17 .17 .203 .12
12 .20 .20 .233 .16 .38 .38 .494 .34

Joint .86 .88 n.a. .76 .31 .31 n.a. .23

15



Table 3. Univariate and Multivariate Predictability Tests

Sign Test Ljung-Box Variance ratio
p̂i p̂a p̂g p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1927-1930 1 .159 .291 .028 .49 .52 .511 .49 .76 .74 .852 .72
2 .139 .295 .043 .47 .49 .478 .49 .61 .63 .777 .51
3 .804 .752 .576 .66 .68 .690 .58 .37 .36 .646 .34
4 .743 .787 .736 .84 .89 .840 .84 .70 .68 .806 .63
5 .999 .999 .982 .69 .62 .608 .61 .58 .43 .680 .48
6 .294 .437 .080 .96 .25 .188 .17 .11 .13 .539 .09
7 .743 .811 .661 .18 .18 .145 .13 .38 .79 .664 .35
8 .515 .702 .397 .78 .78 .780 .79 .82 .75 .845 .80
9 .272 .422 .099 .35 .34 .306 .31 .02 .02 .341 .02
10 .460 .570 .212 .59 .61 .594 .55 .02 .02 .211 .01
11 .264 .434 .070 .04 .04 .010 .04 .04 .05 .466 .03
12 .994 .995 .982 .01 .02 .001 .01 1.0 .88 .911 .96

Joint .548 .728 .199 .05 .07 n.a. .04 .02 .02 n.a. .02
1931-1935 1 .036 .180 .004 .30 .35 .322 .31 .64 .67 .800 .61

2 .987 .993 .968 .55 .61 .579 .58 .81 .82 .880 .77
3 .492 .673 .274 .25 .29 .253 .26 .57 .54 .714 .56
4 .930 .990 .839 .59 .72 .705 .61 .53 .59 .758 .45
5 .229 .465 .073 .06 .07 .039 .06 .91 1.0 .998 .88
6 .222 .384 .055 .71 .71 .693 .69 .90 .90 .928 .86
7 .317 .493 .139 .11 .11 .077 .09 .59 .71 .827 .58
8 .990 .990 .966 .39 .37 .339 .37 .21 .21 .564 .23
9 .175 .322 .037 .45 .49 .458 .45 .23 .17 .539 .23
10 .791 .874 .779 .20 .21 .177 .20 .56 .60 .764 .50
11 .484 .659 .309 .73 .75 .713 .73 .78 .75 .848 .74
12 .807 .840 .688 .05 .05 .009 .04 .46 .39 .660 .43

Joint .569 .874 .048 .44 .52 n.a. .46 .08 .09 n.a. .06

Note _ Numbers shown are MCp-values.p∞ refers to the test’s asymptoticp-value and̂pg is the Gaussian
based MCp-value. p̂i is the CSMMCp-value imposing student t errors; the underlying confidence sets (see
Appendix A) are reported in Table 2.̂pa is the MMC p-value overall degrees-of-freedom. The individual
equation test statistics are: the sign test (3.15) defined in Section 3.4; the Variance ratios (3.9) and the Ljung-
Box criteria (3.8); the joint tests are defined in (3.16)-(3.11)-(3.12).
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Table 3(b). Univariate and Multivariate Predictability Tests (continued)

Sign Test Ljung-Box Variance ratio
p̂i p̂a p̂g p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1936-1940 1 .689 .798 .532 .90 .90 .848 .90 .99 1.0 .997 .96
2 .982 .997 .910 .87 .85 .759 .83 .44 .41 .679 .40
3 .396 .693 .302 .18 .16 .114 .18 .59 .68 .828 .52
4 .538 .670 .368 .93 .97 .918 .94 .61 .65 .809 .57
5 .154 .451 .076 .54 .57 .543 .52 .86 .99 .974 .84
6 .120 .391 .072 .66 .70 .666 .69 .91 .94 .947 .90
7 .254 .477 .165 .51 .54 .528 .50 .86 .86 .927 .85
8 .239 .486 .150 .11 .11 .065 .09 .38 .39 .674 .36
9 .624 .791 .626 .24 .32 .283 .19 .19 .29 .612 .17
10 .817 .838 .670 .90 .93 .868 .91 .11 .12 .512 .10
11 .008 .169 .006 .05 .06 .017 .05 .05 .07 .436 .05
12 .844 .892 .741 .79 .85 .762 .77 .56 .52 .745 .50

Joint .652 .722 .535 .28 .28 n.a. .25 .92 .21 n.a. .92
1941-1945 1 .684 .772 .530 .90 .92 .854 .90 .28 .28 .613 .23

2 .519 .731 .449 .64 .68 .653 .59 .35 .39 .655 .31
3 .270 .585 .196 .95 .95 .892 .95 .57 .58 .744 .55
4 .126 .377 .052 .59 .58 .563 .56 .70 .10 .830 .64
5 .283 .619 .177 .92 .92 .862 .90 .31 .33 .628 .29
6 .090 .380 .051 .27 .27 .255 .26 .21 .23 .588 .19
7 .094 .337 .065 .08 .09 .049 .07 .66 .72 .832 .61
8 .396 .530 .237 .17 .14 .088 .13 .40 .36 .645 .35
9 .784 .920 .809 .35 .32 .311 .30 .04 .05 .356 .04
10 .878 .944 .896 .83 .85 .801 .79 .61 .65 .773 .60
11 .288 .580 .279 .64 .65 .583 .59 .93 .99 .971 .89
12 .396 .683 .434 .43 .41 .381 .35 .10 .12 .508 .07

Joint .303 .604 .268 .79 .79 n.a. .74 .20 .21 n.a. .17
1946-1950 1 .337 .556 .171 .91 .91 .872 .86 .76 .77 .842 .71

2 .540 .737 .476 .09 .08 .030 .07 .85 .87 .890 .81
3 .637 .785 .512 .29 .35 .324 .26 .02 .04 .345 .02
4 .693 .782 .524 1.0 1.0 .989 1.0 .41 .26 .593 .39
5 .830 .876 .733 .57 .39 .316 .53 .17 .13 .517 .14
6 .160 .433 .103 .72 .73 .687 .71 .73 .79 .851 .66
7 .656 .803 .519 .18 .16 .104 .16 .55 .77 .840 .54
8 .022 .174 .001 .14 .16 .106 .12 .77 .80 .874 .72
9 .041 .215 .020 .43 .43 .374 .41 .32 .34 .324 .28
10 .257 .458 .156 .05 .07 .024 .04 .32 .33 .627 .27
11 .240 .487 .165 .95 .96 .920 .90 .97 .91 .930 .93
12 .511 .661 .406 1.0 1.0 .991 .98 .48 .91 .925 .44

Joint .353 .581 .152 .28 .30 n.a. .30 .08 .08 n.a. .05
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Table 3(c). Univariate and Multivariate Predictability Tests (continued)

Sign Test Ljung-Box Variance ratio
p̂i p̂a p̂g p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1951-1955 1 .298 .564 .155 .58 .59 .551 .56 .90 .83 .877 .86
2 .390 .597 .320 .62 .69 .679 .58 .03 .04 .318 .03
3 .840 .900 .781 .41 .41 .364 .37 .56 .58 .761 .55
4 .540 .688 .365 .99 .98 .966 .97 .79 .92 .934 .76
5 .274 .593 .192 1.0 1.0 .997 .99 .87 1.0 .998 .85
6 .688 .778 .519 .01 .01 .000 .01 .25 .24 .575 .20
7 .094 .372 .054 .42 .41 .367 .40 .88 .88 .920 .85
8 .532 .688 .376 .18 .18 .139 .13 .25 .26 .592 .21
9 .161 .424 .101 .92 1.0 .809 .86 1.0 .85 .986 1.0
10 .477 .729 .393 .70 .67 .620 .67 .82 1.0 .995 .78
11 .383 .654 .301 .28 .26 .206 .26 .39 .46 .705 .36
12 .441 .615 .287 .68 .74 .696 .66 .93 .85 .896 .89

Joint .313 .398 .159 .98 .98 n.a. .94 .17 .17 n.a. .14
1956-1960 1 .944 .949 .929 .60 .60 .568 .59 .05 .05 .362 .04

2 .294 .546 .209 .14 .14 .547 .11 .03 .02 .225 .02
3 .534 .708 .450 .88 .88 .837 .85 .05 .05 .410 .05
4 .787 .867 .732 .89 .87 .835 .86 .34 .34 .653 .30
5 .405 .655 .261 .04 .03 .006 .04 .01 .01 .049 .01
6 .277 .534 .217 .47 .47 .453 .42 .32 .31 .639 .29
7 .388 .598 .274 .40 .40 .388 .36 .82 .83 .892 .75
8 .445 .617 .287 .30 .31 .272 .25 .56 .58 .761 .55
9 .984 .979 .953 .53 .47 .448 .46 .93 .89 .911 .92
10 .616 .801 .539 .29 .19 .168 .22 .02 .02 .137 .01
11 .963 .963 .924 .69 .66 .627 .67 .20 .21 .579 .15
12 .959 .959 .978 .69 .68 .631 .66 .71 .65 .796 .65

Joint .811 .791 .697 .91 .91 n.a. .85 .11 .11 n.a. .09
1961-1965 1 .641 .775 .517 .79 .79 .720 .71 .86 .86 .911 .79

2 .393 .655 .337 .64 .64 .614 .60 .86 .86 .912 .78
3 .774 .876 .724 .67 .67 .643 .65 .10 .10 .492 .10
4 .093 .369 .044 .87 .84 .799 .85 .74 .73 .830 .67
5 .460 .725 .397 .49 .47 .451 .47 .06 .06 .403 .05
6 .546 .753 .494 .58 .59 .543 .54 .72 .71 .821 .67
7 .506 .735 .400 .60 .58 .505 .56 .12 .12 .505 .10
8 .581 .769 .581 .88 .90 .834 .87 .72 .72 .829 .67
9 .964 .977 .857 .36 .35 .293 .32 .13 .12 .518 .10
10 .984 .984 .939 .44 .41 .398 .39 .35 .35 .645 .28
11 .034 .236 .006 .46 .47 .424 .43 .06 .06 .350 .04
12 .961 .925 .899 .54 .57 .615 .52 .27 .29 .615 .24

Joint .654 .920 .556 .97 .97 n.a. .94 .68 .68 n.a. .62
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Table 3(d). Univariate and Multivariate Predictability Tests (continued)

Sign Test Ljung-Box Variance ratio
p̂i p̂a p̂g p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1966-1970 1 .668 .789 .491 .13 .16 .088 .10 1.0 1.0 .998 .99
2 .680 .784 .581 .33 .33 .282 .30 .37 .37 .660 .31
3 .648 .841 .523 .99 .99 .971 .97 .68 .68 .806 .62
4 .951 .937 .867 .75 .75 .685 .74 .59 .60 .773 .54
5 .396 .632 .276 .74 .74 .629 .68 .42 .41 .684 .40
6 .375 .645 .335 .26 .28 .218 .22 .20 .17 .568 .16
7 .828 .828 .633 .61 .60 .529 .56 .66 .67 .800 .60
8 .437 .598 .311 .86 .87 .811 .84 .76 .81 .868 .72
9 .200 .492 .150 .87 .87 .821 .84 .85 .86 .903 .82
10 .379 .589 .294 .87 .87 .814 .84 .88 .94 .931 .86
11 .161 .402 .081 .75 .75 .661 .74 .57 .56 .754 .51
12 .312 .562 .190 .83 .84 .768 .78 .49 .51 .720 .45

Joint .705 .728 .484 .66 .66 n.a. .55 .91 .91 n.a. .84
1971-1975 1 .827 .841 .744 .16 .16 .124 .13 .55 .55 .762 .49

2 .323 .562 .238 .21 .24 .191 .18 .43 .42 .690 .36
3 .661 .810 .522 .72 .73 .679 .72 .97 .96 .966 .92
4 .120 .377 .043 .18 .18 .152 .17 .15 .16 .538 .13
5 .126 .333 .038 .23 .27 .220 .22 .16 .16 .544 .14
6 .996 .998 .908 .23 .27 .225 .23 .53 .53 .750 .45
7 .196 .420 .107 .46 .50 .436 .42 .52 .52 .738 .45
8 .993 .993 .873 .17 .19 .158 .17 .88 .89 .931 .80
9 .453 .588 .338 .84 .88 .828 .79 .88 .87 .918 .78
10 .275 .524 .232 .46 .50 .450 .42 .99 1.0 .997 .94
11 .967 .967 .998 .87 .88 .822 .82 .84 .82 .894 .74
12 .156 .448 .112 .13 .13 .096 .08 .85 .87 .903 .74

Joint .191 .597 .039 .40 .39 n.a. .37 .28 .28 n.a. .24
1976-1980 1 .694 .792 .521 .51 .56 .503 .48 .81 .78 .871 .75

2 .865 .891 .812 .94 .93 .887 .91 .46 .48 .721 .43
3 .846 .884 .722 .33 .31 .310 .26 .95 .98 .972 .97
4 .689 .764 .585 .86 .86 .829 .83 1.0 1.0 .991 .99
5 .367 .601 .245 .30 .32 .321 .26 .65 .63 .794 .57
6 .986 .986 .879 .14 .14 .115 .13 .17 .17 .541 .16
7 .985 .999 .986 .99 1.0 .973 .98 .71 .73 .833 .64
8 .643 .839 .666 .08 .08 .040 .07 .31 .30 .620 .26
9 .514 .663 .460 .18 .20 .177 .17 .35 .27 .609 .29
10 .131 .346 .052 .30 .31 .312 .26 .25 .26 .604 .24
11 .181 .448 .064 1.0 1.0 .999 1.0 .99 1.0 .988 .98
12 .807 .885 .713 .21 .94 .895 .90 .94 .96 .382 .04

Joint .637 .743 .535 1.0 1.0 n.a. .97 .24 .24 n.a. .20
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Table 3(e). Univariate and Multivariate Predictability Tests (continued)

Sign Test Ljung-Box Variance ratio
p̂i p̂a p̂g p̂i p̂a p∞ p̂g p̂i p̂a p∞ p̂g

1981-1985 1 .142 .405 .057 .53 .53 .474 .47 .53 .55 .734 .47
– 2 .191 .501 .167 .22 .22 .165 .20 .35 .35 628 .30

3 .770 .882 .688 .33 .33 .271 .30 .96 .98 .970 .92
4 .987 .990 .843 .91 .90 .846 .88 .52 .51 .703 .44
5 .677 .783 .520 .32 .35 .297 .30 .69 .67 .801 .62
6 .342 .660 .345 .76 .75 .704 .74 .93 .94 .940 .90
7 .107 .344 .056 .23 .23 .174 .20 .97 .97 .959 .91
8 .984 .984 .878 .49 .53 .474 .46 .29 .29 .602 .28
9 .290 .567 .255 .91 .94 .883 .88 .13 .16 .535 .12
10 .388 .602 .278 .14 .15 .100 .11 .65 .67 .798 .60
11 .378 .662 .298 .76 .77 .732 .76 .41 .42 .668 .35
12 .511 .690 .479 .26 .24 .194 .22 .53 .55 .732 .47

Joint .853 .922 .508 .04 .04 n.a. .02 .29 .29 n.a. .24
1986-1990 1 .917 .964 .989 .57 .58 .542 .52 .62 .63 .803 .56

2 .483 .732 .444 .92 .96 .901 .93 .27 .30 .637 .22
3 .546 .721 .438 .80 .78 .747 .75 .06 .07 .482 .05
4 .824 .914 .711 .13 .13 .080 .09 .05 .05 .459 .03
5 .489 .693 .407 1.0 1.0 .978 .98 .92 .93 .931 .85
6 .211 .559 .125 .62 .64 .567 .54 .89 .87 .906 .81
7 .623 .808 .620 .97 .96 .927 .94 .51 .50 .727 .46
8 .425 .647 .329 .28 .28 .230 .25 .92 .94 .944 .87
9 .781 .889 .658 .52 .53 .499 .49 .72 .63 .805 .69
10 .953 .953 .913 .37 .34 .292 .34 .12 .12 .531 .06
11 .799 .857 .681 .90 .91 .860 .85 .32 .39 .683 .26
12 .025 .251 .011 .99 1.0 .973 .98 .76 .77 .870 .72

Joint .734 .734 .430 .59 .58 n.a. .52 .48 .48 n.a. .42
1991-1995 1 .379 .653 .238 .20 .20 .156 .16 .18 .18 .554 .15

2 .279 .540 .243 .38 .38 .366 .33 .56 .58 .773 .50
3 .966 .966 .911 .57 .55 .523 .55 .27 .29 .620 .24
4 .811 .919 .657 .37 .37 .362 .33 .18 .20 .576 .16
5 .518 .748 .379 .46 .46 .456 .39 .47 .49 .729 .47
6 .081 .369 .054 1.0 1.0 .990 1.0 .51 .51 .742 .48
7 .488 .675 .445 .09 .10 .039 .08 .01 .02 .065 .01
8 .442 .690 .448 .98 .99 .945 .97 .95 .99 .979 .94
9 .936 .993 .907 .60 .62 .581 .57 .05 .06 .331 .04
10 .260 .563 .254 .24 .25 .200 .23 .96 .99 .973 .95
11 .505 .716 .422 .45 .43 .423 .36 .64 .62 .800 .59
12 .376 .611 .297 .33 .32 .313 .30 .98 .99 .978 .99

Joint .962 .969 .956 .91 .91 n.a. .88 .12 .13 n.a. .08
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4.1. Overview of the results

First, focusing on the univariate tests, we see that the asymptoticp-values may lead to under-
rejections, particularly in the case of the variance ratio test. In general, the MCp-values are lower
than the asymptotic ones for GARCH and variance ratio tests. The converse seems to hold for
the Ljung-Box tests; note that a small scale simulation study we performed in Dufour and Khalaf
(2002a) suggested this test might over-reject in regression contexts.

Second, our results illustrate the importance of considering multivariate tests. In many cases,
whereas univariate tests detect significant serial correlations and/or GARCH effects, the joint tests
do not detect significant departures form the null hypothesis of interest. Interestingly however, in
some cases, multivariate tests are more powerful in rejecting the joint null. This occurs for example
in the case of Engle’s test, in the 1946-50 sample, and for the Ljung-Box case, in the 1981-85 sub-
sample. The smallest univariatep-value is 15%, yet the joint testp-value is only 4%. Recall that the
univariate tests do not account for error covariances, which justifies such conflicts.

Thirdly, the confidence set based MMC approach is useful here. Indeed, in many cases, if
degrees-of-freedom which are not compatible with the data are allowed, GARCH effects may end
up undetected. For example, refer to the joint Engle-type test in 1927-30, 1946-50, 1976-80; this
also occurs more noticeably with univariate tests.

Finally, we observe that almost invariably, the tests considered have led to conflicting decisions
regarding the maintained hypothesis. For example, although in principle, Lee-King’s test is sup-
posed to be superior to the Engle test (because it is designed to account for positivity of variance),
we observe that in many cases, the Engle test is significant whereas its Lee-King counterpart is not.
The same holds true for the Ljung-Box and Variance Ratio tests. Of course, a formal simulation
study is required to assess the relative power of competing tests, yet the conflicts we observed with
this well known data set is worth noting, particularly when using exactp-values, for conflicts in test
decisions are often attributed to finite sample distortions.

Overall, the multivariate diagnostics do not detect serious deviations from thei.i.d. assumption.5

The assumption ofi.i.d. errors provides an acceptable working framework with this data set. This
result supports the common practice of considering 5 years sub-groups to perform asset pricing tests
(e.g. efficiency, spanning, etc.) tests which requirei.i.d. errors.

4.2. Detailed discussion of the results

We next discuss the test results in details, across all subperiods. We useα to represent the level of
the tests.

• 1927-30 subperiod

Gaussian-based Engle tests detect significant GARCH in equations 4, 5, 11 and 12 [forα ≥ 2%
and 5%, 1% and 4% respectively]; the associated joint test is significant forα ≥ 1%. Note that the
asymptotic Engle test is significant (p∞ = .007) only for equation 11. With Studentt errors, the

5Recall that in the case of the confidence set based MMCp̂i, the cut-off level is 2.5% (if an overall level of 5% is
desired) since 2.5% was used to construct the underlying confidence set.
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MC p-values for Engle’s tests exceed 10% for equations 4, 5 and 12; in the case of equation 11,
GARCH-t effects are still significant for levels exceeding3.5% (p̂i = .01); the associated joint test
remains marginally significant forα ≥ 6.5% (p̂i = .04). Regarding Lee-King’s test, although the
asymptoticp-values are less than 5% in the case of equations 5, 11 and 12, all MCp-values exceed
5% on univariate and joint levels.

The MC variance ratio tests are significant at 5% in Gaussian and non-Gaussian cases, for
equations 9, 10 and 11 and on a joint level. The MC Gaussian and non-Gaussian Ljung-Box tests
are significant at 5% for equations 11 and 12; however, the associated joint test is significant for
level exceeding 4% under Gaussian errors and levels exceeding 7% for non-Gaussian errors. Sign
tests are significant (̂pg = .028 and .043 respectively) only for equations 1 and 2.

• 1931-35 subperiod

Gaussian-based Engle tests detect significant GARCH in equations 11 and on a joint test basis
[for α ≥ 4%]; the associated asymptotic test is not significant at 5% (p∞ = .054). With Studentt
errors, GARCH-t effects are still significant in this equation, for levels exceeding6% (p̂a = .06);
the Studentt joint test is marginally significant forα ≥ 8.5% (p̂i = .06). Lee-King’s tests are not
significant overall equations in this subperiod.

While all variance ratio tests are not significant at conventional levels, the Ljung-Box MC test
is significant at 5% in Gaussian and non-Gaussian context; with normal errors, the sign test is
also significant at 5% for equation 9 and marginally (p̂g = .055) for equation 6. However, the
corresponding jointp-values exceed 44%. The sign test is significant for equation 1, forα ≥ .004
assuming normality andα ≥ 6.1% assuming t-errors; the associated joint test is significant (for
α ≥ 4.8%) only under normality.

• 1936-40 subperiod

While all univariatep-values exceed 17%, the joint Gaussian-based Engle test has ap-value of
8%. Otherwise, no significant departure from thei.i.d. hypotheses are detected in this subperiod.
Turning to Table 3, we see that the variance ratio, Ljung-Box and sign tests are all significant at
5% in the case of equation 11, under normality; in this case, with t-errors, the sign test remains
significant (forα ≥ 3.3%) while the variance ratio and Ljung-Box are significant forα ≥ 7% and
6% respectively. All joint tests havep-values larger than20%.

• 1941-45 subperiod

While all asymptotic univariatep-values exceed 20%, Gaussian-based Engle tests detect signif-
icant GARCH in equations 4 and 5 [forα ≥ 5%] and marginally for equation 9 [forα ≥ 6%];
however, the associated jointp-value is not significant (̂pg = .87) and the same holds for the asso-
ciated GARCH-tp-values which exceed 10%. Lee-King’s tests are not significant overall equations
in this subperiod.

MC p-values for the sign and Ljung-Box test all exceed 5%; Gaussian and t-based variance
ratio tests are significant at 5% in equation 9 [forα ≥ 4%]. However, all associated jointp-values
exceeds 21%.
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• 1946-50 subperiod

While all asymptotic univariatep-values exceed 8.6%, Gaussian-based Engle tests detect sig-
nificant GARCH in equations 4 [forα ≥ 3%]; the associated jointp-value is highly significant
(p̂g = .01). In the case of GARCH-tp-values, the MC Engle tests detect significant GARCH
for levels exceeding 7.5% (p̂i = .05); the associated joint test is still significant forα ≥ 5.5%.
Lee-King’s tests are also not significant in this subperiod.

>From Table 3, we see that the MC variance ratios are significant at 5% in the case of equation
3, in normal and non-normal cases; on a joint basis, the normal based MC variance ratio test is
significant at 5% whereas it t-based counterpart is significant at 8%. Regarding the MC Ljung-Box
test, we see that it is significant in the case of equation 12, atα ≥ 4% under normality andα ≥ 7%
under Studentt errors; the test is however not significant on a joint level. Examining the sign test
under normal errors, we find significant departures from thei.i.d. hypothesis in equations 8 and 9
(for α ≥ 0.1% and 2% respectively); under t-errors, the test remains significant in these equations
(for α ≥ 5.7% and 6.6% respectively). The joint sign tests are not significant at conventional levels.

• 1951-56 subperiod

Gaussian-based Engle tests detect significant GARCH in equations 7 (p̂g = .01) and marginally
for equation 3 [forα ≥ 6%]; the associated joint test is however not significant, and the asymptotic
Engle test is significant (p∞ = .024) only for equation 7. With Studentt errors, the MCp-values
for Engle’s tests exceed 9% for equations 3; in the case of equation 11, GARCH-t effects are still
significant for levels exceeding5% (p̂a = .05); the associated joint test is not significant for levels.
Regarding Lee-King’s test, we find find significant Gaussian and t-basedp-values in both equations
3 and 7 (in equation 3,̂pg = .05 andp̂a = .05; in equation 7,̂pg = .02 andp̂a = .03). However, all
joint Lee-King tests havep-values not smaller than28%.

With respect to tests predictability, the normal and non-normal variance ratio and Ljung-Box
MC tests are significant at 5% for equations 2 and 6 respectively. However, all joint tests and all
sign tests are not significant at usual levels.

• 1956-60 subperiod

While all Engle tests are not significant at conventional levels, Lee-King’s test detect significant
GARCH in equations 7 and 8 with Gaussian and Studentt errors (in both equationŝpg = .02 and
p̂a = .03). The asymptoticp-values also yield the same evidence. However, none of the joint
p-values is significant (all exceed 60%).

In this subperiod, the normal and non-normal variance ratio MC tests are significant at 5% for
equations 1, 2, 3, 5 and 10. Despite such univariate evidence, the associated joint tests havep-values
which exceed 9%. It is also worth noting that the asymptotic Variance Ratio test is not significant for
equations 1, 2, 3 and 10. In the case of the Ljung-Box test, we find significant (at 5%) MCp-values
under normal and non-normal errors only for equation 10; we note that the joint MC Ljung-Box
p-values all exceed 85% and none of the sign tests is significant at usual levels.

• 1961-65 subperiod

23



While all univariatep-values exceed 14%, the Gaussian-based Engle test has ap-value of 7%
for equation 8. Otherwise, no significant departures from thei.i.d. hypotheses are detected in this
subperiod.

Turning to the Ljung-Box tests, we observe no significantp-values at standard levels. In con-
trast, the MC normal and non-normal sign test is significant (at 5%) for equation 11; the tests is
significant at 5% given normal errors in equation 4, but the Studentt p-values are not significant;
the same holds true for the joint sign tests. Similarly, none of the Ljung-Box tests is significant.
The variance ratio MC tests are significant, in equation 4 and 11, forα ≥ 5% and 4% respectively,
under normality, and 6% under the Studentt hypothesis; the associated jointp-values exceed 62%.

• 1966-70 subperiod

Gaussian-based Engle tests detect significant GARCH in equations 5, 10 and 12 [forα ≥ 1%,
2%, and 4% respectively]; the associated joint test is significant forα ≥ 5%. Note that the asymp-
totic Engle test is significant at 5% only for equation 5. With Studentt errors, in the case of equation
5, GARCH effects are still significant for levels exceeding3.5% (p̂i = .01); for equations 10 and
12 GARCH-t effects are marginally significant forα ≥ 6.5% and 7.5% respectively; the associated
joint test is not marginally significant (p̂i = .08 andp̂a = .23). All Lee-King tests havep-values
not smaller than9%. Similarly, none of the predictability tests is significant at usual levels.

• 1971-75 subperiod

Gaussian-based Lee-King tests signal significant GARCH in equations 2, 4 and 10 [forα ≥ 4%,
1%, and 4% respectively]; the associated joint test is however not significant. With Studentt errors,
GARCH effects are still significant at 5% in all three cases. However, the jointp-values are not
significant. Engle’s tests are not significant except for the Gaussian based case in equation 1, with a
p-value of .06%.

The serial correlation tests are all not significant at usual levels. The normal-errors based sign
test is significant (at 5%) jointly and for equations 4 and 5. However, its t-based counterparts are
not significant.

• 1976-80 subperiod

Gaussian and Studentt based Lee-King tests are significant at 5% in equations 1, 4, 5 and 7;
the associated joint tests all havep-values≤ 3%. Engle’s tests provide the same evidence given
Gaussian errors for equations 5, 6 and 7 and on joint basis. The Studentt based Engle test for
these equations is significant for levels exceeding 2%, 6.5% and 6.5% respectively; the joint Engle
Studentt based CSMMCp-value is 3%.

Except for equation 12 under normality, the variance ratio tests are not significant. All MC
Ljung-Box and sign tests exceed 5% in this subperiod.

• 1981-85 subperiod
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While all Lee-King tests are not significant at conventional levels, Engle’s test is significant in
equations 6 and 7 with Gaussian and Studentt errors (p̂g = .01 in both equations; in equation 7,
p̂a = .02 while in equation 6, Engle’s sup-MC test is significant forα ≥ 5.5%). However, joint
p-values are not significant at 5%.

In this subperiod, we note an interesting result regarding the Ljung-Box test: whereas all univari-
ate tests are not significant, the joint MC normal and non-normal tests are significant at 5%. Recall
that the joint tests are based on orthogonalized residuals, which corrects for cross-correlations. All
other tests (univariate or multivariate) are not significant on a joint level.

• 1986-90 subperiod

While all Lee-King tests are not significant at conventional levels, Engle’s test is significant
in equations 1 and 12 with Gaussian errors (p̂g = .01 and .04 respectively). However, there is
evidence for GARCH errors only in equation 1 (p̂a = .02). Furthermore, jointp-values are not
significant at 5%. Similarly, none of the Ljung-Box tests is significant. The variance ratio MC
tests are significant, in equation 3 and 4, forα ≥ 5% and 3% respectively, under normality, and
for α ≥ 6% and 5% under the Studentt hypothesis; the associated jointp-values exceed 52%. As
for the sign test, we find significant MC normal and non-normalp-values (at 5%), in equation 12;
however, this no longer holds on a joint test level.

• 1991-95 subperiod

In this subperiod, Engle tests are not significant jointly and individually Lee-King’s test is sig-
nificant in equations 2 and 7 with Gaussian and Studentt errors (p̂g = .02 and .01 respectively;
in equation 7,p̂a = .02 while in equation 1, Lee-King’s sup-MC t-based test is significant for
α ≥ 5.5%). However, all jointp-values exceed 23%.

Turning to Table 3, we see that Sign tests and Ljung-Box tests are not significant jointly and
individually The MC variance ratio test is significant in equations 7 and 9 with Gaussian and Student
t errors (p̂g = .01 and.04 respectively; in equation 7,̂pa = .02 while in equation 9, the variance
ratio sup-MC t-based test is significant forα ≥ 6%). However, all jointp-values exceed 8%.

5. Conclusion

Previous research typically assess MLR-based asset pricing statistical models using tests based on
individual equations. Due to error cross-correlations, statistics from individual equations which
are not independent, which raises simultaneous test problems. In this paper, we consider a diag-
nostic test procedure that accounts for cross-equation correlations exactly, in possibly non-normal
contexts. We focus on departures from thei.i.d. errors hypothesis, on univariate and multivariate
levels. Our univariate tests extend existing exact procedures by allowing for unspecified param-
eters in the error distributions. Our multivariate tests are invariant to MLR coefficients and error
covariances; dependence on further unknown parameters in the error distribution is circumvented
applying MC test techniques. We consider, tests for serial correlation, tests for multivariate GARCH
and sign-type tests against general dependencies and asymmetries. The tests proposed are applied
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to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock
Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our tests reveal noticeable
conflicts in the univariate versus multivariate procedures; this highlights the importance of formally
controlling for contemporaneous correlation of disturbances.
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A. Appendix: Monte Carlo goodness-of-fit tests

This appendix presents the set estimation method we propose to obtain a confidence set denoted
C(Y ) for the nuisance parameterν associated with assumption (2.3). The set is obtained by ”invert-
ing” a GF test, of levelα1, for the error distribution underlying (2.3). In other words, the confidence
set corresponds to the set ofν0 values that are not rejected by a GF test which assesses (2.3) im-
posingν = ν0. We use the multivariate skewness and kurtosis criteria introduced in Beaulieu et al.
(2001b):6

ESK(ν0) =
∣∣SK−SK(ν0)

∣∣ , (A.1)

EKU(ν0) =
∣∣KU−KU(ν0)

∣∣ , (A.2)

where

SK =
1
T 2

T∑

t=1

T∑

i=1

d̂3
ii, (A.3)

KU =
1
T

T∑

t=1

d̂2
tt, (A.4)

d̂it are the elements of the matrix̂U(Û ′Û)−1Û ′ and SK(ν0) and KU(ν0) are simulation-based
estimates of the expectedSK andKU given (2.3). Conditional onSK(ν0) andKU(ν0), these tests
satisfy the conditions of Theorem2.1. Thus the MC test technique may be applied to obtain their
corresponding exactp-values,̂p(ESK0 |ν0), p̂(EKU0 |ν0). To obtain a joint test based on these two
statistics without relying on Bonferroni rules, we propose the following joint test statistic:

CSK = 1−min {p̂(ESK0 |ν0), p̂(EKU0 |ν0)} . (A.5)

The MC test technique may once again be applied to obtain a size correctp-value for the combined
test. For further details on the procedure, see Dufour et al. (2002).

6See also Dufour et al. (2002), Mardia (1970) and Zhou (1993).
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