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1 Introduction

How does an asset’s liquidity affect its demand? A substantial amount of research effort has

been devoted to the relation between liquidity and the conditional distribution of returns.

However, the question of how liquidity influences portfolio allocations is not easy to address,

particularly since for most interesting utility functions — like the widely used power utility

— portfolio weights are complex implicit functions of higher-order conditional moments of

returns. The goal of this paper is to characterize the dependence of optimal portfolio choices

on changes in the liquidity of assets through time.

The dependence of portfolio weights on liquidity is not the only challenging issue, as

liquidity itself is a complex and not easy to measure concept. A possible, even though relative,

definition would be to say that an asset is liquid if large quantities can be traded in a short

period of time without moving the price too much. Accordingly, several alternative measures

of liquidity have been used in the literature, including the price impact of trade, the bid-ask

spread, share or dollar volume, and turnover, among others. A security is taken to be more

liquid the lower its price impact, the tighten its bid-ask spread, or the higher its volume or

turnover.

The standard cross sectional empirical finding is that expected returns are decreasing

in liquidity, as measured by the bid-ask spread in Amihud and Mendelson (1986), turnover

in Datar, Naik, and Radcliffe (1998), price impact in Brennan and Subrahmanyan (1996),

or trading volume in Brennan, Chordia, and Subrahmanyan (1998). The reasoning is that

investors anticipate having to pay higher transaction costs when they need to sell the illiquid

assets in the future, and thus require a higher expected return to hold them.

However, empirical evidence on the time series relation is quite different. Whereas Amihud

(2002) finds a long-term (monthly and yearly) negative relation between market liquidity

(measured by price impact) and market returns, Gervais, Kaniel, and Mingelgrin (2001) find a

short-term (up to 20 days) positive relation between liquidity (measured by volume) and stock

returns. Hence, it appears: (1) that there is a temporal dimension to the effects of changes

in liquidity, with expected returns increasing in liquidity at short daily or weekly frequencies,

while decreasing at longer monthly or yearly frequencies; and/or (2) that different measures
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of liquidity produce significantly different forecasts of the first moment of returns.

There is little guidance from theory on how portfolio weights should respond to liquidity.

In a recent paper, Longstaff (2001) associates illiquidity with the notion of thin markets, i.e.,

with the possibility that sometimes investors may find it impossible to initiate or unwind

positions in a given security at any price. Thus, he defines illiquidity as a bound on the

amount of shares that can be traded per period. Specifically, Longstaff analyzes a continuous-

time portfolio choice model in which a logarithmic-utility investor is restricted to trading

strategies of bounded variation. Through numerical examples, Longstaff shows that in general

the investor chooses a lower initial portfolio weight in the presence of liquidity constraints.

Furthermore, he shows that the required price discounts to induce investors to hold illiquid

securities can be substantial.

Our contribution is to analyze the empirical relation between optimal portfolio allocations

and different measures of liquidity, at different investment frequencies. We extend the previous

papers by studying the optimal portfolio functions themselves, instead of focusing only on the

first conditional moment of returns. We adopt the nonparametric method of Brandt (1999) and

Aı̈t-Sahalia and Brandt (2001). This technique allows us to express optimal portfolio choices

directly as functions of the state variable, i.e. liquidity, without requiring the intermediate step

of estimating conditional moments of returns. We test three different measures of liquidity:

Turnover, Dollar Volume, and Price Impact. We also include Signed Turnover, which does

not measure liquidity directly, but can be thought of as a proxy for order flow. To address

the time dimension of liquidity, we consider investment decisions of a power-utility investor

with three different horizons: one day, one week, and one month. Since the previous papers

found that liquidity is more strongly related to the returns of small than large firms, we also

separate the analysis between these two classes of stocks.

Using a sample of NYSE stocks from 1963 to 2000, we find optimal conditional portfolio

functions consistent with the previous papers. First, and most surprisingly, we do indeed find

an inversion in the relation between optimal portfolio weights and liquidity across frequencies:

whereas optimal weights are strongly increasing functions of liquidity at the very short daily

and weekly horizons, they become decreasing functions of liquidity at longer monthly horizons.

While we do not have a theoretical explanation for this fact, it is consistent with the findings

3



in Gervais, Kaniel, and Mingelgrin (2001) and Amihud (2002). It seems that increases in

liquidity induce prices to adjust upward, to reduce the illiquidity discount found in Longstaff

(2001), and once the adjustment is done, after a few days, expected returns become lower

(consistently with cross-sectional well-documented facts). Since we compute optimal weights,

rather than individual moments, our results would further imply that this short-term price

run up is not accompanied by increases in conditional moments that the investor dislikes. In

particular, it must be the case that, during this short period of price run up, the investor

forecasts a relatively high first moment and a relatively low variance of returns.

Secondly, we find that the three measures of liquidity tested do not produce exactly the

same results: the reversal mentioned above is visible in Dollar Volume, less so in Price Impact,

and not so in Turnover. On the other hand, Turnover is a stronger determinant of optimal

weights at shorter frequencies. Thirdly, not surprisingly, we find a stronger relation between

liquidity and optimal weights for small than for large stocks. Finally, we document a very

strong dependence of portfolio weights on Signed Turnover.

Along a quite different dimension, our study may help to explain the “intriguing short sales

reluctance puzzle” mentioned in D’Avolio (2002, p. 303). This author shows that most stocks

are shortable: stocks potentially impossible to short account for less than 1% of the market

value; 91% of actually borrowed stocks have an average loan fee of only 0.17% per annum.

Geczy, Musto, and Reed (2002) show that short-selling costs are sufficiently low to allow for the

profitable implementation of several well-known trading strategies. However, as documented in

Almazan, Brown, Carlson, and Chapman (2002), of all investment funds permitted to engage

in short selling, only 10% actually do. Furthermore, the total short interest is typically only

1.5% of market value. Our results show that optimal portfolio weights (conditional on several

measures of liquidity) are never negative. That is, a CRRA investor forming his optimal

(expected utility maximizing) decisions on basis of liquidity information would never choose

to short sell stocks. Hence, our results suggest that investors do not engage in frequent short

selling simply because it is not optimal to do so.

The next section defines and motivates the liquidity measures used in this paper, section

3 presents our method and data, section 4 the main results, and section 5 concludes.
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2 Conditioning information

This section defines and motivates the use of liquidity measures. Note that most of the papers

referred below deal with the relation between liquidity and the first or second conditional

moments of returns. However, we stress that we are only implicitly interested in conditional

moments of returns, since the nonparametric technique used allows for the direct estimation

of optimal portfolio functions. Nevertheless, these relations can help us rationalize the shape

of the portfolio functions found — any risk-averse investor obviously likes higher means and

lower variances. We examine Turnover in a first subsection, followed by Dollar Volume, and

then by Price Impact. The last subsection introduces Signed Turnover.

2.1 Turnover

The first measure of liquidity is Turnover, defined for an individual security as Vi/Ni, where

Vi is the share volume of security i and Ni the number of shares outstanding. For a portfolio,

we define Turnover (TURN) as the value-weighted average

TURN ≡
I∑

i=1

ωi
Vi

Ni

where I is the number of securities in the portfolio, and ωi ≡ NiPi/
∑I

j=1 NjPj , with Pi being

the stock price.

Datar, Naik, and Radcliffe (1998) propose turnover as a proxy for liquidity and, in an

exercise similar to Amihud and Mendelson (1986), find that turnover is cross-sectionally neg-

atively related to monthly returns. Jones (2002) builds a long time series from 1900–2000 of

large NYSE stocks and finds that high turnover predicts low stock returns one year or more

ahead. If changes in turnover can be interpreted as fluctuations in the trading bound defined

in Longstaff (2001), then we would expect to see (1) lower turnover accompanied by lower

portfolio weights and (2) increases in turnover followed by very short-run price increases as

the security price adjusts to its higher liquidity.
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2.2 Dollar Volume

A second measure of liquidity is Dollar Volume (DVOL), defined for a portfolio as

DV OL ≡
I∑

i=1

ViPi

Brennan, Chordia, and Subrahmanyan (1998) find that dollar volume is cross-sectionally neg-

atively related to monthly risk-adjusted returns. In the time series dimension, Gervais, Kaniel,

and Mingelgrin (2001) find that stocks which experience unusually high (low) volume over a

day or a week tend to appreciate (depreciate) over the subsequent 1, 10, and 20 days. They

argue that this finding is consistent with the visibility hypothesis: if higher volume attracts

attention to a stock, then the number of potential buyers increases and thus the stock price

will also tend to increase. They disaggregate the analysis by market capitalization and find

that the effect is stronger for small firms than for large firms. Hence, we expect to see portfolio

weights increasing in volume, especially at very short investment horizons.

2.3 Price Impact

Another measure of liquidity is the Price Impact (PI) of trading. In the microstructure

literature, this is usually defined as the price change induced by a given signed (buy/sell) order

size. Hence, a more liquid security will have a lower price impact. Brennan and Subrahmanyan

(1996) find a positive cross-sectional relation between this measure and stock returns. Since

high frequency data on transactions and quotes is not available for long periods of time, we

follow Amihud (2002) and define a daily stock measure of price impact as the ratio of absolute

return (Ri) to dollar volume. For a portfolio,

PI ≡ 1
I

I∑

i=1

|Ri|
ViPi

Amihud (2002) computes this measure for the whole market and finds a positive time series

relation with stock returns at the monthly and yearly frequencies.
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2.4 Signed Turnover

Finally, we also consider the quantity Signed Turnover (STRN):

STRN ≡ TURN × sign(R)

where R is the return on the portfolio, and sign(R) is equal to +1 (−1) when R is positive

(negative). Pástor and Stambaugh (2001) and Eckbo and Norli (2002) use similar quantities

to estimate monthly liquidity measures.

Signed Turnover cannot be directly associated with liquidity; yet it is a proxy for (stan-

dardized) order flow. We expect it to be positively related to optimal portfolio weights if,

conditionally on high turnover, returns display positive autocorrelation. Previous empirical

findings on this issue are mixed. Some studies have focused on aggregate returns and vol-

ume. Campbell, Grossman, and Wang (1993) found that returns on high-volume days tend to

reverse themselves. LeBaron (1992) finds that the return autocorrelation on the Dow Jones in-

dex decreases with volume. Other studies focused on individual stock data. Conrad, Hameed,

and Niden (1994) found return reversals (continuation) after high (low)-transaction weeks. On

the contrary, Stickel and Verrecchia (1994) found return continuation after high-volume days.

Llorente, Michaely, Saar, and Wang (2000) advocate that these differences can be explained

by the higher degree of information asymmetry present in smaller illiquid stocks. They find

that companies with smaller market capitalization, or higher bid-ask spreads, display return

continuation following high volume days, whereas larger stocks, or stocks with smaller bid-ask

spreads, show almost no pattern in returns following high-volume days.

Our results show that Signed Turnover is quite useful in determining portfolio weights for

small, illiquid stocks. We find that optimal weights increase in Signed Turnover, which is

consistent with the positive autocorrelation hypothesis for small stocks in Llorente, Michaely,

Saar, and Wang (2000). Furthermore, we find this same relation for large stocks when the

investor rebalances daily — i.e., when even large stocks may have liquidity constraints.
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3 Econometric estimation of conditional portfolio choices

Consider an investor who maximizes the conditional expected utility of next period’s wealth,

subject to budget and adding-up constraints:

max
αt

E[u(Wt+1)|Zt] (1)

s.t. Wt+1 = Wtα
′
tRt+1

1 = α′tι

where Wt is the investor’s wealth at time t, the vector αt ≡ [αt,f αt,s]′ represents the pro-

portions of wealth invested in a risk-free asset (αt,f ) and in a portfolio of risky stocks (αt,s),

Rt+1 ≡ [Rt+1,f Rt+1,s]′ is the vector of total returns on those assets, ι is a vector of ones, and

Zt represents conditioning information — liquidity, in our case. The investor can have three

different horizons, i.e., the difference between t and t + 1 can either be one day, one week, or

one year.

Assume a utility function with constant relative risk aversion (CRRA):

u(Wt+1) =





W 1−γ
t+1 / (1− γ) if γ > 1

ln Wt+1 if γ = 1
(2)

where γ represents the coefficient of relative risk aversion.1 This utility function is attractive

in the sense that the portfolio weights are independent of the level of wealth. However, it has

the disadvantage of not permitting a closed-form solution to the investor’s portfolio choice

problem.

Imposing the adding-up constraint on the weights αt, the first order condition for (1) is:

αt,s : E[mt+1(αt,s)|Zt] ≡ E

[
∂u(Wt+1)

∂Wt+1
(Rt+1,s −Rt+1,f )|Zt

]
= 0 (3)

with Wt+1 = Wt[Rf + αt,s(Rt+1,s −Rt+1,f )].

1Our empirical results assume a coefficient of relative risk-aversion of γ = 10. Mehra and Prescott (2003)
mention that γ = 10 should be considered as an upper bound on the degree of risk-aversion. Even with this
number we sometimes find large portfolio weights, but this is just evidence of their well-known equity premium
puzzle. For robustness, Section 4.3.1 analyzes the results for different degrees of risk aversion.
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We use the nonparametric estimation technique of Brandt (1999) and Aı̈t-Sahalia and

Brandt (2001). It consists of replacing the conditional expectations with sample analogues.

To estimate the optimal portfolio weight in a given reference state Z = z̄, we find the number

αs(z̄) that solves the sample equivalent to the optimality conditions in (3):

αs(z̄) :
1

Th

T∑

t=1

mt+1(αs(z̄))k (Zt; z̄, h)
1∑T

t=1 k (Zt; z̄, h)
= 0 (4)

The kernel function k(Zt; z̄, h) measures how far each sample observation is from the reference

point z̄, giving more weight to observations close to z̄. We use a normal kernel: k (Zt; z̄, h) =

(2π)−1/2 exp
(−d2

t /2
)
, with dt = (Zt − z̄)/h, where h is the bandwidth. We apply a standard

exactly identified GMM to (4), i.e., αs(z̄) is the number that sets the square of the left-hand

side of (4) to zero.

The choice of the bandwidth h is crucial. A larger h implies averaging across more data

points, thus reducing the variance but increasing the bias; a smaller h makes the estimator

differentiate more between observations in different states and use fewer points, thus reducing

the bias but increasing the variance. The conventional solution to optimize this tradeoff

between variance and bias is to choose a bandwidth of the form h = λσ (Z) T−1/(K+4), where

σ (Z) is the standard deviation of the predictor Z, T is the sample size, K is the dimension

of Z (one in our case), and λ is a constant.

There is no good guidance in the literature for bandwidth selection with non i.i.d. obser-

vations, as is the case with our data. For instance, Chaudhuri and Marron (1999) advocate

a simple trial and error approach. In our application, a small λ usually produces very noisy

portfolio weights that vary a lot with even small changes in liquidity, thus not making much

economic sense; a big enough λ will eventually result in a flat portfolio weight, equal to the

unconditional estimator. Therefore, we try different values for this constant and pick the

one that eliminates local noisy fluctuations but still keeps the basic shape of the portfolio

function.2

The main advantage of Brandt’s (1999) approach is that it permits estimating portfolio

weights directly from the predictor variables. Whereas traditional studies in conditional port-
2The results in Section 4.2 below are for values of λ of 9, 6, and 3 for respectively the daily, weekly, and

monthly frequencies. Section 4.3.2 ensures that the results are robust to different values of λ.
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folio choice usually start by estimating a model relating returns to forecasting variables and

then find the portfolio weights given the conditional distribution of returns, we perform a sin-

gle nonparametric estimation relating predictors directly to portfolio weights. The advantage

is that we avoid the introduction of additional noise and potential misspecifications from the

intermediate step of estimating the return distribution. Being nonparametric, this approach

has also the advantage of giving a consistent estimator of the portfolio weights, but has the

disadvantage of having higher variance than a correctly specified parametric estimator would

have. However, lack of closed-form solutions prevent us from following the latter approach.

We conclude this section with a brief discussion regarding the data. We collect daily

returns from 1963 to 2000 on three assets: a risk free asset, a portfolio of small stocks, and a

portfolio of large stocks. The return on the risk-free asset is the sample average of the return

on a one-year Treasury Bill. We form the stock portfolios by sorting the NYSE stocks on their

market capitalization. The small stocks portfolio comprises deciles 2 and 3; the large stocks

portfolio comprises deciles 9 and 10.3 The daily data is aggregated to weekly and monthly

frequencies, resulting in sample sizes of 9431 daily observations, 1978 weekly observations, and

455 monthly observations.

We also collect daily volume data from CRSP and compute the measures of liquidity defined

above for each of the two stock portfolios. Time-aggregation is done by summing across dates

in the cases of Turnover and Dollar Volume, or by averaging across dates in the case of Price

Impact. This follows the conventions in Lo and Wang (2000) and Amihud (2002). Figure 1

plots these time series at the monthly frequency. Turnover and Dollar Volume (Price Impact)

trend upwards (downwards) and display some extreme positive values. One noteworthy aspect

of Figure 1 is that it shows, contrary to what one might expect, that the turnovers of small

and large stocks are of the same order of magnitude. This confirms the suggestion of Lo and

Wang (2000, p. 272) that “smaller-capitalization companies can have high turnover”.

Given that our nonparametric approach requires stationary data, we take the logarithm

and detrend each of the predictors. For Turnover, we do a linear detrending of the form:

ln(TURNt) = β0 + β1t + εt (5)
3The risk-free asset is from www.federalreserve.gov and the stock data is from the Center for Research in

Security Prices (CRSP).
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and redefine Turnover (TURN) to be the residual εt of this regression. The time unit t can

either be a day, a week, or a month. Similar detrendings are performed for Dollar Volume

(DVOL) and Price Impact (PI).

For Signed Turnover we do instead an exponential detrending in order to preserve the

positive sign of raw Turnover. Hence, we estimate

ln(TURNt) = β0e
β1tεt (6)

where TURNt is still the raw Turnover (i.e., before the detrending in (5)), and then redefine

Signed Turnover (STRN) to be the product of the residuals εt of (6) and the sign of returns.

We rescale all series by dividing by their standard-deviations to facilitate the interpretation

of the results. Table 1 presents descriptive statistics of the four predictors, after detrending

and standardizing. By construction, all measures have mean zero and standard-deviation

equal to one.

4 Results

The first subsection presents unconditional portfolio allocations. Section 4.2 provides the

mains results on optimal conditional portfolios. The last subsection provides robustness

checks.

4.1 Unconditional portfolio weights

Table 2 presents unconditional portfolio choices. These weights are obtained by applying a

standard GMM procedure to the unconditional first order conditions:

αs :
1
T

T∑

t=1

mt+1(αs) = 0 (7)

When the risky asset is a portfolio of large stocks, the allocation to stocks is about 0.5,

regardless of the investment horizon. For the case of small stocks, the allocation to the risky

asset decreases from 1.29 at the daily frequency to 0.56 at the monthly frequency.

As a first simple appraisal of whether the unconditional choices are optimal, we use the
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liquidity measures as instruments and re-estimate the resulting overidentified models. In

the case where liquidity cannot forecast the return distribution, the unconditional weights

are optimal and the resulting unconditional first order conditions are independent of the

predictors. Under this null hypothesis, the statistic

J = min
α

T

[
1
T

T∑

t=1

mt+1(α)⊗ g(Zt)
]′

S−1

[
1
T

T∑

t=1

mt+1(α)⊗ g(Zt)
]

(8)

is distributed χ2 with degrees of freedom equal to the size of the vector g(Zt) minus one.

We test several functions of the forecasting variables: g(Zt) = [1, Zt], g(Zt) = [1, Zt, Z
2
t ], or

g(Zt) = [1, Zt, Z
2
t , Z3

t ]. The optimal matrix S is obtained with the Newey-West estimator.

Table 2 presents the χ2 statistic and p-values. At the daily and weekly frequencies, the results

overwhelmingly reject that optimal weights are independent of the predictors, suggesting that

liquidity is useful in predicting returns at these shorter horizons. At the monthly frequency,

while Signed Turnover still seems to be correlated with returns, the other liquidity measures

loose some significance, indicating that liquidity becomes less useful at longer horizons.

4.2 Conditional portfolio weights

We now present the main results of this paper: portfolio weights as functions of liquidity.

Each one of the different predictors — Turnover, Dollar Volume, Price Impact, and Signed

Turnover — is analyzed in turn. For each of these measures, we present the results in a figure

and a corresponding table.

Figure 2 shows portfolio choices conditional on Turnover. Each plot shows the proportion

allocated to risky assets, αs, as a function of the state variable Z — Turnover in this case.

The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks

(left column) or a portfolio of large stocks (right column). In the first row the portfolio is

rebalanced daily; in the second row, weekly; and in the third, monthly.

Table 3 is the companion table to Figure 2. Each panel shows αs(Z), with Z ∈ {−2,−1, 0, 1, 2},
for the corresponding plot in figure 2. Standard errors are obtained with the stationary boot-

strap of Politis and Romano (1994). This technique accounts for the autocorrelation in the

data and has the advantage, over a simple block bootstrap, of generating a stationary resam-
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pled pseudo-time series.4 The standard errors are presented only to gauge the precision of the

nonparametric method used; it is obviously meaningless to test whether a portfolio weight is

statistically away from zero.5

The important question is whether the weights respond to changes in liquidity. Hence

Table 3 also presents the first derivative of αs(Z), approximated by the finite difference

∂α(Z)
∂Z

∣∣∣
Z=z̄

∼= α(z̄ + 0.1)− α(z̄ − 0.1)
0.2

(9)

Stationary bootstrap t-statistics for a zero slope are presented in curly braces below the point

estimates.

The results show that at the shorter horizons, i.e. daily and weekly, Turnover significantly

determines the allocation to small stocks. As Turnover decreases from its average value of zero

to -2, the optimal weight on small stocks decreases from 1.52 to 0.72 at the daily frequency,

and from 0.93 to 0.59 at the weekly frequency. In this range, all slopes are significant at least

at the 10% level. As Turnover increases from zero to positive values, we also see a significant

increase in optimal weights, with α(Z = 1) reaching 1.64 (daily) or 1.07 (weekly). However, for

higher values of Turnover the weights no longer seem to increase: the slopes at Z=1 and Z=2

are not statistically different from zero. At the longer monthly frequency, optimal portfolio

choices do not seem to respond to changes in Turnover. The findings for the case where the

risky asset is a portfolio of large stocks are qualitatively similar, but much less pronounced.

At the daily frequency, the optimal weight on large stocks still increases with Turnover, but

the slopes are only significant at the lower values of Z = −1 and Z = −2. At the weekly

frequency, the slope is only significant around Z = −1. At the monthly frequency, again there

is no dependence.
4The algorithm consists of: (1) let the time indices I1, I2, ... be a sequence of iid random variables with

a discrete uniform distribution on {1, ..., T}; (2) let the block lengths L1, L2, ... be a sequence of iid random
variables with a geometric distribution; (3) generate pseudo-time series Z∗ and R∗ by stacking the overlapping
blocks, Z∗ = [ZI1 , ..., ZI1+L1−1, ZI2 , ..., ZI2+L2−1, ...] and similarly for R∗, stopping when the length of these
new series reaches T ; (4) estimate α; (5) repeat B times; (6) compute the standard deviation of the B numbers
α. We need to specify the mean of the geometric distribution in step 2, which determines the average block
length. Following Horowitz (2000), we set it to T 1/5. We perform B = 1000 iterations.

5For another application of the stationary bootstrap see Sullivan, Timmermann, and White (1999). Even
though there is some recent research on the asymptotic properties of the bootstrap applied to GMM estimators
(for example, Horowitz (2000) and Inoue and Shintani (2001) present cases where the bootstrap provides
asymptotic refinements over first-order approximations), little is known about the bootstrap properties when
GMM estimators run on top of a kernel function (which is our case).

13



The second measure of liquidity is Dollar Volume. The results are in Figure 3 and Table

4. Overall, Dollar Volume appears to be a somewhat weaker predictor of returns. At the daily

frequency, we still see a decrease in αs(Z) for small stocks when Z decreases to -1 or -2; for large

stocks, the slope is significant around the Z = −2 level. However, at the weekly frequency,

optimal portfolio weights for both classes of stocks do not seem to respond to changes in

volume. Quite surprisingly, at the monthly frequency we see small stocks responding again

to volume, but now with the inverse sign: the optimal weight decreases with volume. In

particular, αs(Z) has a significant negative slope at Z = −1. This finding will be validated in

the robustness section below.

Figure 4 and Table 5 present the results for Price Impact. Recall that this measure has

a different sign than the previous two, i.e., a decrease in Price Impact means that the stocks

are becoming more liquid. Overall, the results are similar to the ones with Dollar Volume.

For small stocks at the daily frequency, as the Price Impact decreases below the normal value

of zero, the weight on small stocks increases. In other words, an increase in liquidity is

accompanied by an increase in the optimal portfolio weight. At the weekly frequency αs(Z)

is practically flat. For both stocks at the monthly frequency, we see again an inversion of the

short-term relation, i.e., αs(Z) becomes decreasing in liquidity. However, the results here are

not very strong: while the slope of αs(Z) is significant Z = 1 (large stocks), we do not find

evidence of an overall positive first derivative in the robustness section below.

Figure 5 and Table 6 show the results for Signed Turnover. This variable magnifies the

relations found with simple Turnover, thus appearing to be very relevant conditioning infor-

mation. Recall that a low negative value of Signed Turnover is associated with high volume

originated from heavy selling, whereas a high positive value is associated with high volume

caused by heavy buying. At the daily frequency, weights for both small and large stocks

are strongly increasing in Signed Turnover, with αs(Z) displaying a very significant positive

derivative over the whole range of Z. At the weekly frequency, small stocks still display this

strong positive dependence over all values of Signed Turnover, even though the allocation to

large stocks becomes insensitive to Z. At the monthly frequency, the optimal weight on small

stocks still increases over negative values of Z, which was not visible with normal Turnover.

Hence, it seems that distinguishing between turnover in an up and a down market helps
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considerably in forecasting the conditional distribution of returns.

One remarkable aspect of these results is that the optimal weight on the risky asset is

never negative for any of the four predictors studied above.6 This means that short-selling

stocks is never optimal for a CRRA investor, given the conditioning information — Turnover,

Dollar Volume, Price Impact, and Signed Turnover — studied in this paper. As shown below

in section 4.3.1, this result is robust to different degrees of risk aversion.

4.3 Robustness tests

The next subsection analyzes the effect of different degrees of risk aversion (γ). The last

subsection proposes a parametric specification for the portfolio function.

4.3.1 Degree of risk aversion (γ)

To analyze whether our conclusions depend on the degree of risk aversion, we re-estimate

optimal portfolio weights for γ = 3, γ = 5, and γ = 20. Table 7 presents the results for Price

Impact.7

Different degrees of risk-aversion (γ) change mainly the level of the portfolio function

(lower γ, higher α), having little effect on the shape of this function. Hence, our conclusions

regarding the relation between optimal weights and liquidity variables are not shaped by the

level of risk aversion. Furthermore, even with γ = 20, which is an implausible high value,

we do not find negative optimal weights on stocks. Hence, our conclusions regarding the

non-optimality of short-selling are also not influenced by the degree of risk aversion.

4.3.2 Parametric functions

The nonparametric technique used here can be subject to several criticisms. First, the specifi-

cation of the bandwidth is subjective and may thus influence the conclusions drawn. Second,

the procedure is subject to high sampling error, as can be seen in the relatively high standard

deviations of the conditional allocations. Lastly, little is known about the properties of the

bootstrap when applied to “GMM-with-Kernel” estimators.
6The only exception is the optimal one-day allocation, to either small or large stocks, conditional on a

extreme value of Signed Turnover close to -2.
7Tables for the other liquidity variables are available from the authors upon request.
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To answer these criticisms, we estimate a parametric portfolio function. Given the smooth

shapes observed in the nonparametric results, we postulate a polinomial shape for the optimal

weight function:

αparam
s (Z) = c0 + c1Z + c2Z

2 + c3Z
3 (10)

The constants c0...c3 are estimated through GMM on the moment conditions

1
T

T∑

t=1

mt+1(αparam
s (Zt))⊗ g(Zt) = 0 (11)

with g(Zt) = [1, Zt, Z
2
t , Z3

t ]. Note that the system is exactly identified. Significant c1, c2, or

c3 parameters imply dependence of α on Z, i.e., a nonzero first derivative.

The results in Table 8 show non-constant weights in broadly the same cases of the non-

parametric method, and hence support our previous conclusions.

One noteworthy finding in the monthly frequency is the statistical significance of the

linear and cubic terms in the case of Dollar Volume for small stocks, implying a negative first

derivative. As mentioned above, for Price Impact we do not find significance in any parameter

(other than the constant c0) and hence cannot validate the nonparametric finding of a positive

slope.

5 Conclusion

This paper used a nonparametric technique to document the empirical relation between opti-

mal portfolio weights for a CRRA investor and liquidity.

Our main findings are the following. First, at very short horizons — daily and weekly

— optimal stock allocations are strongly increasing functions of liquidity. This is consistent

with increases in liquidity being followed by very short-term price increases, as documented in

Gervais, Kaniel, and Mingelgrin (2001). These price increases are consistent with a decrease in

the liquidity discount of Longstaff (2001). At longer monthly horizons, there is some evidence

(though not very strong) of reversal of this relation, that is, optimal weights become decreasing

functions of liquidity. This is consistent with increases in liquidity forecasting lower expected

returns at the monthly or longer frequencies, as documented in Amihud (2002).
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Secondly, the three measures of liquidity tested do not produce the same results: the

reversal mentioned above is visible in Dollar Volume, less so in Price Impact, and not so in

Turnover. On the other hand, Turnover is a stronger determinant of optimal weights at shorter

frequencies.

Thirdly, the relation between liquidity and optimal weights is stronger for small than for

large stocks. This inequality is consistent with most papers that have studied the relation

between liquidity measures and expected returns.

Fourthly, optimal weights for small stocks show a very strong dependence on Signed

Turnover, which is consistent with the positive autocorrelation after high volume days found

in Llorente, Michaely, Saar, and Wang (2000).

Finally, the optimal portfolio functions are never negative, implying that short selling is not

optimal for a CRRA investor that conditions his decisions on liquidity. This finding suggests

that the low level of short selling observed in the US stock market may be simply due to the

fact that it is not optimal to short sell.

To summarize, our results suggest that in a real situation of portfolio management with

rebalance at irregular, mixed frequencies, it may be fruitful to consider the information in

the measures studied here for shorter-term trading decisions, while maintaining traditional

predictors (dividend yield, term premium, default premium, etc.) for longer-term decisions.
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Table 1: Descriptive Statistics
Descriptive statistics for daily values of the portfolio measures of liquidity. All variables are detrended and
standardized, hence having a mean of 0 and a standard deviation of 1 by construction.

Small Stocks Portfolio Large Stocks Portfolio
TURN DVOL PI STRN TURN DVOL PI STRN

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Std 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Skewness -0.16 -0.39 0.84 -0.36 0.46 -0.18 0.61 -0.12
Kurtosis 3.53 3.64 4.38 1.93 3.64 2.95 4.43 1.85

Percentiles:
5% -1.75 -1.84 -1.43 -1.53 -1.39 -1.66 -1.54 -1.47
50% 0.01 0.05 -0.13 0.45 -0.14 0.06 -0.08 0.51
95% 1.64 1.55 1.89 1.29 1.84 1.55 1.83 1.38

Correlations:
TURN 1.00 1.00
DVOL 0.90 1.00 0.68 1.00
PI -0.66 -0.85 1.00 -0.43 -0.43 1.00
STRN 0.24 0.19 -0.13 1.00 0.11 0.10 -0.09 1.00
Rt+1 0.08 0.03 -0.01 0.22 0.02 0.01 0.02 0.10
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Table 2: Unconditional Portfolio Weights and Tests for Overidentifying Restric-
tions
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (columns
under “Small Stocks”) or a portfolio of large stocks (columns under “Large Stocks”). In panel A, both the
investment horizon and the rebalancing frequency are one day; in panel B, one week; and in C, one month.
Each panel presents the unconditional allocation to the respective stock portfolio, obtained from equation (7).
Standard-errors are in parenthesis. Each panel then also presents the test for overidentifying restrictions defined
in equation (8), with p-values in square brackets. Each column corresponds to the following specification of
instruments: g1(Z) = [1, Z], g2(Z) = [1, Z, Z2], g3(Z) = [1, Z, Z2, Z3].

Small Stocks Large Stocks

Panel A: Daily frequency

Weight 1.29 0.51
(0.26) (0.13)

Test Overid Rest g1(Z) g2(Z) g3(Z) g1(Z) g2(Z) g3(Z)
Z = TURN 0.87 49.62 69.72 0.95 33.35 52.04

[0.35] [0.00] [0.00] [0.33] [0.00] [0.00]
Z = DVOL 1.39 12.38 18.70 1.96 37.23 62.12

[0.24] [0.00] [0.00] [0.16] [0.00] [0.00]
Z = PI 20.55 36.61 38.06 56.30 66.11 66.86

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
Z = STRN 294.52 297.27 372.70 242.34 245.52 362.21

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Panel B: Weekly frequency

Weight 0.84 0.50
(0.17) (0.12)

Test Overid Rest g1(Z) g2(Z) g3(Z) g1(Z) g2(Z) g3(Z)
Z = TURN 1.04 25.49 35.53 1.05 8.38 14.69

[0.31] [0.00] [0.00] [0.31] [0.02] [0.00]
Z = DVOL 1.80 7.48 7.91 2.87 14.09 20.00

[0.18] [0.02] [0.05] [0.09] [0.00] [0.00]
Z = PI 12.32 16.24 18.03 19.29 24.72 27.23

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
Z = STRN 129.90 133.08 141.65 111.09 114.09 135.74

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Panel C: Monthly frequency

Weight 0.56 0.53
(0.10) (0.13)

Test Overid Rest g1(Z) g2(Z) g3(Z) g1(Z) g2(Z) g3(Z)
Z = TURN 1.39 7.05 8.22 0.10 4.04 6.63

[0.24] [0.03] [0.04] [0.76] [0.13] [0.08]
Z = DVOL 1.49 2.08 3.26 0.61 5.55 7.19

[0.22] [0.35] [0.35] [0.44] [0.06] [0.07]
Z = PI 4.90 7.93 9.51 6.45 9.50 9.72

[0.03] [0.02] [0.02] [0.01] [0.01] [0.02]
Z = STRN 57.18 57.86 61.58 46.21 46.68 55.13

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
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Table 3: Optimal Portfolio Weights as a Function of Turnover
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (columns under
“Small Stocks”) or a portfolio of large stocks (columns under “Large Stocks”). In panel A, both the investment
horizon and the rebalancing frequency are one day; in panel B, one week; and in C, one month. Each panel
presents the optimal allocation to the respective stock portfolio conditional on the value of Turnover indicated
in the column heading. The optimal weight is the solution to equation (4). Standard-errors from the bootstrap
detailed in section 4.2 are in parenthesis. The slope at each value of the predictor variable is obtained from
equation (9). Bootstrap t-statistics for a zero slope are in curly braces.

Small Stocks Large Stocks

Panel A: Daily frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 0.72 1.18 1.52 1.64 1.58 0.41 0.52 0.6 0.65 0.62

(0.24) (0.22) (0.22) (0.30) (0.45) (0.16) (0.14) (0.13) (0.13) (0.16)
Slope 0.48 0.42 0.24 0.01 -0.13 0.13 0.1 0.07 0.02 -0.1

{4.90} {4.56} {1.88} {0.09} {-0.68} {2.26} {2.16} {1.54} {0.26} {-0.92}

Panel B: Weekly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 0.59 0.76 0.93 1.07 1.07 0.37 0.43 0.52 0.59 0.62

(0.17) (0.17) (0.17) (0.19) (0.25) (0.14) (0.13) (0.13) (0.14) (0.17)
Slope 0.16 0.18 0.16 0.09 -0.11 0.05 0.08 0.08 0.05 0.02

{2.15} {2.85} {2.96} {1.37} {-0.79} {0.89} {1.77} {1.59} {0.84} {0.25}

Panel C: Monthly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 0.61 0.6 0.55 0.56 0.55 0.61 0.57 0.5 0.48 0.55

(0.18) (0.13) (0.13) (0.15) (0.23) (0.24) (0.16) (0.14) (0.15) (0.30)
Slope 0.05 -0.05 -0.02 0.01 -0.02 -0.01 -0.06 -0.07 0.04 0.05

{0.30} {-0.52} {-0.29} {0.10} {-0.15} {-0.07} {-0.57} {-0.69} {0.27} {0.19}
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Table 4: Optimal Portfolio Weights as a Function of Dollar Volume
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (columns under
“Small Stocks”) or a portfolio of large stocks (columns under “Large Stocks”). In panel A, both the investment
horizon and the rebalancing frequency are one day; in panel B, one week; and in C, one month. Each panel
presents the optimal allocation to the respective stock portfolio conditional on the value of Dollar Volume
indicated in the column heading. The optimal weight is the solution to equation (4). Standard-errors from
the bootstrap detailed in section 4.2 are in parenthesis. The slope at each value of the predictor variable is
obtained from equation (9). Bootstrap t-statistics for a zero slope are in curly braces.

Small Stocks Large Stocks

Panel A: Daily frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 1.05 1.29 1.43 1.45 1.41 0.49 0.59 0.64 0.61 0.52

(0.23) (0.21) (0.23) (0.29) (0.40) (0.17) (0.14) (0.13) (0.14) (0.17)
Slope 0.28 0.19 0.08 -0.02 -0.06 0.14 0.07 0.01 -0.06 -0.13

{2.62} {2.06} {0.68} {-0.15} {-0.43} {1.93} {1.30} {0.21} {-0.92} {-1.48}

Panel B: Weekly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 0.78 0.85 0.89 0.89 0.85 0.41 0.48 0.54 0.56 0.55

(0.17) (0.16) (0.17) (0.20) (0.25) (0.15) (0.13) (0.13) (0.14) (0.16)
Slope 0.08 0.06 0.02 -0.02 -0.06 0.07 0.07 0.03 0 -0.01

{0.91} {0.85} {0.38} {-0.29} {-0.67} {1.04} {1.24} {0.61} {0.08} {-0.14}

Panel C: Monthly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 0.82 0.68 0.55 0.47 0.45 0.5 0.62 0.61 0.54 0.39

(0.18) (0.13) (0.12) (0.15) (0.19) (0.25) (0.16) (0.14) (0.15) (0.25)
Slope -0.04 -0.16 -0.1 -0.06 0.03 0.13 0.06 -0.05 -0.1 -0.21

{-0.21} {-1.70} {-1.24} {-0.72} {0.25} {0.72} {0.40} {-0.51} {-0.78} {-1.02}
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Table 5: Optimal Portfolio Weights as a Function of Price Impact
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (columns
under “Small Stocks”) or a portfolio of large stocks (columns under “Large Stocks”). In panel A, both the
investment horizon and the rebalancing frequency are one day; in panel B, one week; and in C, one month.
Each panel presents the optimal allocation to the respective stock portfolio conditional on the value of Price
Impact indicated in the column heading. The optimal weight is the solution to equation (4). Standard-errors
from the bootstrap detailed in section 4.2 are in parenthesis. The slope at each value of the predictor variable
is obtained from equation (9). Bootstrap t-statistics for a zero slope are in curly braces.

Small Stocks Large Stocks

Panel A: Daily frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 1.54 1.4 1.29 1.19 1.09 0.45 0.48 0.52 0.56 0.57

(0.32) (0.29) (0.27) (0.25) (0.25) (0.18) (0.16) (0.14) (0.14) (0.14)
Slope -0.15 -0.13 -0.1 -0.1 -0.11 0.02 0.04 0.04 0.03 -0.02

{-2.37} {-2.10} {-1.59} {-1.18} {-0.99} {0.40} {0.78} {0.99} {0.59} {-0.21}

Panel B: Weekly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 0.88 0.86 0.84 0.83 0.81 0.5 0.52 0.54 0.53 0.49

(0.25) (0.22) (0.19) (0.17) (0.18) (0.17) (0.14) (0.13) (0.13) (0.14)
Slope -0.03 -0.02 -0.01 -0.01 -0.05 0.01 0.02 0.01 -0.02 -0.07

{-0.51} {-0.37} {-0.17} {-0.18} {-0.51} {0.18} {0.37} {0.18} {-0.36} {-0.82}

Panel C: Monthly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 0.45 0.47 0.56 0.68 0.76 0.39 0.43 0.52 0.7 0.8

(0.19) (0.15) (0.13) (0.13) (0.20) (0.28) (0.16) (0.14) (0.15) (0.28)
Slope -0.01 0.06 0.11 0.11 0.06 0.02 0.07 0.12 0.23 -0.18

{-0.06} {0.78} {1.36} {1.00} {0.31} {0.07} {0.50} {1.31} {1.65} {-0.59}
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Table 6: Optimal Portfolio Weights as a Function of Signed Turnover
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (columns under
“Small Stocks”) or a portfolio of large stocks (columns under “Large Stocks”). In panel A, both the investment
horizon and the rebalancing frequency are one day; in panel B, one week; and in C, one month. Each panel
presents the optimal allocation to the respective stock portfolio conditional on the value of Signed Turnover
indicated in the column heading. The optimal weight is the solution to equation (4). Standard-errors from
the bootstrap detailed in section 4.2 are in parenthesis. The slope at each value of the predictor variable is
obtained from equation (9). Bootstrap t-statistics for a zero slope are in curly braces.

Small Stocks Large Stocks

Panel A: Daily frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight -0.66 0.31 1.59 2.71 3.47 -0.34 0.04 0.61 1.17 1.49

(0.20) (0.22) (0.24) (0.31) (0.41) (0.14) (0.14) (0.14) (0.16) (0.20)
Slope 0.67 1.21 1.27 0.93 0.6 0.25 0.49 0.61 0.47 0.19

{7.46} {15.64} {10.38} {5.86} {4.08} {5.64} {9.71} {9.39} {6.08} {2.71}

Panel B: Weekly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 0.18 0.52 0.98 1.41 1.71 0.45 0.46 0.49 0.55 0.62

(0.15) (0.16) (0.17) (0.19) (0.22) (0.15) (0.13) (0.12) (0.14) (0.16)
Slope 0.26 0.42 0.47 0.37 0.24 0.01 0.02 0.05 0.06 0.06

{5.74} {7.38} {6.76} {4.94} {3.23} {0.15} {0.33} {0.76} {1.28} {1.37}

Panel C: Monthly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
Weight 0.22 0.4 0.71 0.83 0.78 0.45 0.51 0.56 0.6 0.65

(0.14) (0.13) (0.13) (0.19) (0.26) (0.21) (0.16) (0.14) (0.16) (0.19)
Slope 0.08 0.29 0.26 0.00 -0.07 0.06 0.05 0.05 0.04 0.07

{2.07} {4.05} {2.15} {-0.03} {-0.83} {0.58} {0.54} {0.48} {0.64} {1.10}
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Table 7: Optimal Portfolio Weights as a Function of Price Impact for Different
Degrees of Risk Aversion
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (columns
under “Small Stocks”) or a portfolio of large stocks (columns under “Large Stocks”). In panel A, both the
investment horizon and the rebalancing frequency are one day; in panel B, one week; and in C, one month.
Each panel presents the optimal allocation to the respective stock portfolio conditional on the value of Price
Impact indicated in the column heading. The optimal weight is the solution to equation (4). The coefficient γ
defines the degree of risk aversion of the CRRA utility function in equation (2).

Small Stocks Large Stocks

Panel A: Daily frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
γ = 3 4.50 4.20 3.96 3.74 3.51 1.47 1.56 1.69 1.82 1.87
γ = 5 2.93 2.70 2.50 2.33 2.15 0.89 0.95 1.03 1.11 1.13
γ = 10 1.54 1.40 1.29 1.19 1.09 0.45 0.48 0.52 0.56 0.57
γ = 20 0.79 0.71 0.65 0.60 0.55 0.23 0.24 0.26 0.28 0.29

Panel B: Weekly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
γ = 3 2.71 2.65 2.64 2.65 2.62 1.64 1.72 1.78 1.77 1.63
γ = 5 1.71 1.67 1.65 1.64 1.60 0.99 1.04 1.07 1.06 0.98
γ = 10 0.88 0.86 0.84 0.83 0.81 0.50 0.52 0.54 0.53 0.49
γ = 20 0.45 0.43 0.43 0.42 0.40 0.25 0.26 0.27 0.27 0.25

Panel C: Monthly frequency

Z=-2 Z=-1 Z=0 Z=1 Z=2 Z=-2 Z=-1 Z=0 Z=1 Z=2
γ = 3 1.40 1.46 1.72 2.09 2.46 1.25 1.42 1.71 2.30 2.62
γ = 5 0.87 0.92 1.09 1.32 1.52 0.77 0.86 1.04 1.40 1.59
γ = 10 0.45 0.47 0.56 0.68 0.76 0.39 0.43 0.52 0.70 0.80
γ = 20 0.23 0.24 0.28 0.34 0.38 0.20 0.22 0.26 0.35 0.40
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Table 8: Parametric Estimators of Conditional Portfolio Weights
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (columns under
“Small Stocks”) or a portfolio of large stocks (columns under “Large Stocks”). In panel A, both the investment
horizon and the rebalancing frequency are one day; in panel B, one week; and in C, one month. Each panel
gives estimates of the parameters ci for the optimal portfolio function defined in equation (10). These estimates
are obtained through GMM on the moment conditions (11). P-values are in square brackets.

Small Stocks Large Stocks

Panel A: Daily frequency

c0 c1 c2 c3 c0 c1 c2 c3

Z = TURN 1.71 0.58 -0.29 -0.02 0.65 0.15 -0.11 0.01
[0.00] [0.07] [0.00] [0.60] [0.00] [0.39] [0.13] [0.61]

Z = DVOL 1.59 0.26 -0.21 -0.03 0.76 -0.05 -0.15 0.03
[0.00] [0.36] [0.06] [0.57] [0.00] [0.78] [0.02] [0.23]

Z = PI 1.15 -0.50 0.32 -0.06 0.55 0.05 -0.05 0.01
[0.00] [0.07] [0.13] [0.34] [0.00] [0.71] [0.57] [0.73]

Z = STRN 2.57 3.36 -0.58 -0.40 0.59 1.17 0.02 -0.07
[0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.61] [0.00]

Panel B: Weekly frequency

c0 c1 c2 c3 c0 c1 c2 c3

Z = TURN 1.09 0.64 -0.08 -0.09 0.51 0.27 0.01 -0.04
[0.00] [0.00] [0.08] [0.01] [0.00] [0.06] [0.93] [0.09]

Z = DVOL 0.95 0.13 -0.09 -0.03 0.55 0.22 -0.04 -0.05
[0.00] [0.54] [0.15] [0.45] [0.00] [0.15] [0.53] [0.08]

Z = PI 0.82 -0.04 0.04 -0.02 0.52 0.08 0 -0.02
[0.00] [0.84] [0.77] [0.71] [0.00] [0.57] [0.95] [0.33]

Z = STRN 1.17 1.11 -0.07 -0.09 0.35 0.03 0.19 0.08
[0.00] [0.00] [0.70] [0.12] [0.07] [0.82] [0.20] [0.06]

Panel C: Monthly frequency

c0 c1 c2 c3 c0 c1 c2 c3

Z = TURN 0.58 -0.17 0.01 0.05 0.47 0.03 0.09 -0.05
[0.00] [0.36] [0.88] [0.30] [0.01] [0.81] [0.60] [0.42]

Z = DVOL 0.57 -0.33 0.08 0.07 0.70 0.13 -0.14 -0.07
[0.00] [0.05] [0.34] [0.04] [0.00] [0.54] [0.17] [0.21]

Z = PI 0.58 0.26 0.04 -0.04 0.54 0.26 0.03 -0.04
[0.00] [0.13] [0.68] [0.25] [0.00] [0.25] [0.76] [0.33]

Z = STRN 0.89 0.52 -0.30 -0.20 0.41 -0.08 0.26 0.17
[0.00] [0.01] [0.07] [0.07] [0.08] [0.69] [0.27] [0.15]
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Figure 1: Time Series of Raw Data
Each plot displays raw (before detrending) monthly data for the indicated liquidity measure. The bold line in
each panel represents the portfolio of large stocks (deciles 9 and 10 of the NYSE); the thinner line represents
the portfolio of small stocks (deciles 2 and 3 of the NYSE).
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Figure 2: Optimal Portfolio Weights as a Function of Turnover
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (left column)
or a portfolio of large stocks (right column). In the first row, both the investment horizon and the rebalancing
frequency are one day; in the second row, one week; and in the third, one month. The bold line in each panel
represents the optimal fraction of wealth allocated to the respective stock portfolio as a function of Turnover.
Each point in this function is the solution to equation (4). The thin horizontal line represents the optimal
unconditional allocation, which is given by equation (7).
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Figure 3: Optimal Portfolio Weights as a Function of Dollar Volume
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (left column)
or a portfolio of large stocks (right column). In the first row, both the investment horizon and the rebalancing
frequency are one day; in the second row, one week; and in the third, one month. The bold line in each panel
represents the optimal fraction of wealth allocated to the respective stock portfolio as a function of Dollar
Volume. Each point in this function is the solution to equation (4). The thin horizontal line represents the
optimal unconditional allocation, which is given by equation (7).
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Figure 4: Optimal Portfolio Weights as a Function of Price Impact
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (left column)
or a portfolio of large stocks (right column). In the first row, both the investment horizon and the rebalancing
frequency are one day; in the second row, one week; and in the third, one month. The bold line in each
panel represents the optimal fraction of wealth allocated to the respective stock portfolio as a function of Price
Impact. Each point in this function is the solution to equation (4). The thin horizontal line represents the
optimal unconditional allocation, which is given by equation (7).
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Figure 5: Optimal Portfolio Weights as a Function of Signed Turnover
The investor allocates his wealth between a risk-free asset and either a portfolio of small stocks (left column)
or a portfolio of large stocks (right column). In the first row, both the investment horizon and the rebalancing
frequency are one day; in the second row, one week; and in the third, one month. The bold line in each panel
represents the optimal fraction of wealth allocated to the respective stock portfolio as a function of Signed
Turnover. Each point in this function is the solution to equation (4). The thin horizontal line represents the
optimal unconditional allocation, which is given by equation (7).
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