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1 Introduction

The literature on option valuation has expanded dramatically over the last decade. A large
number of models have been proposed to address the empirical shortcomings of the classic
Black-Scholes (BS) (1973) approach. For instance, an important class of models specifies
the volatility of the underlying asset as a deterministic function of time and the price of
the underlying asset (see, e.g., Derman and Kani (1994); Dupire (1994); Rubinstein (1994)).
Other studies have investigated stochastic volatility models (see, e.g., Scott (1987), Hull and
White (1987); Heston (1993); Melino and Turnbull (1990)), jump models (Bates (1996a)),
and discrete-time GARCH models (see, e.g., Duan (1995); Heston and Nandi (2000)).1

The objective of this paper is to contribute to the methodological debate on the estimation
and evaluation of option valuation models. In particular, we investigate the importance of
the loss function. It is well known in the statistics literature that the choice of loss function
is critical for model estimation and evaluation. In fact, it can be argued that the choice
of loss function implicitly defines the model under consideration (Engle, 1993). Standard
theoretical option valuation models imply a deterministic option price and thus do not tell
the empirical researcher how to specify the error term (Renault, 1997). The choice of loss
function is key because it implicitly assumes a particular error structure.
Given the importance of the loss function, it is evident that the estimation and evaluation

stages of a model are inextricably linked. Indeed, if the choice of loss function affects the
model specification, then estimating a model under one loss and evaluating it under another
amounts to changing the model specification without allowing the parameter estimates to
adjust. Common sense thus suggests the use of identical loss functions at the estimation
and evaluation stages in order to minimize evaluation loss. However, perhaps because the
implications of the choice of loss function are less obvious than those of the theoretical model,
this common-sense recommendation is often ignored.
The choice of loss function is particularly important in option valuation. Option valuation

models are rarely estimated to draw inference about a structural parameter of intrinsic
interest. Rather, they are typically estimated for use in the valuation or hedging of traded
options out-of-sample. Thus different purposes, for example, hedging, speculating, or market
making, imply different loss functions for the model errors. We therefore recommend that
one uses the objective of the exercise to determine the loss function. Moreover, we postulate
that it will generally be preferable to estimate the parameters for such an out-of-sample
exercise using an identical in-sample estimation loss function.
The existing academic literature has a different focus: to a large extent it ignores the

(out-of-sample) evaluation loss function when estimating the parameters. Implicitly this
strategy appears to be motivated by the belief that loss functions and model specification

1For a more complete overview of different approaches used in option pricing, see Bakshi, Cao, and Chen
(1997) and Bates (1996b).
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are totally separate from each other. One typically starts with a model that (presumably)
performs “well.” Model performance is assumed to be consistent across a wide range of
evaluation criteria or loss functions. As a result, the choice of the loss function used in
estimation is focused on creating a statistical environment that allows for the most precise
and efficient estimation of the parameters of this “good” model. For instance, some papers
in the literature advocate a loss function based on implied volatility. Others calibrate and
estimate their models using loss functions based on squared dollar pricing errors (see, e.g.,
Heston and Nandi (2000); Bakshi, Cao, and Chen (1997)), relative pricing errors, or a
likelihood-based approach (Jacquier and Jarrow (2000)). We argue that this separation of
the estimation and evaluation stages is misguided because the choice of the loss function
in the evaluation stage is part of the specification of the statistical model. As this choice
depends on the end-use of the model, we do not promote a particular loss function but
rather emphasize that consistency in the choice of loss functions is likely to be crucial. Our
contribution to the option valuation literature in this regard is threefold:
First, we provide evidence that when implementing option valuation models, it is critical

to align the estimation and evaluation loss functions. We illustrate the importance of the
loss function in an application of the benchmark Dumas, Fleming, and Whaley (DFW)
(1998) implied volatility model, which they refer to as the Ad-Hoc model and which we refer
to as the Practitioner Black-Scholes (PBS) model. We illustrate our methodological point
using the PBS model estimated daily, both because of its simplicity and because of its use
as a benchmark in the existing literature. We do not advocate the use of the PBS model
over structural models. Instead, we follow Berkowitz (2001), who provides a theoretical
justification for the PBS approach as a reduced-form approximation to an unknown structural
model, and also provides support for frequent re-estimation of the PBS parameters without
necessarily considering the PBS model to be a proper, fully specified alternative to structural
models. Using three years’ data of European options on the S&P 500 index, we show that
correctly aligning the estimation and evaluation loss functions can yield improvements of
over 50% in the evaluation loss and therefore conclude that at least for this type of model,
aligning estimation and evaluation loss functions works very well.
Second, we emphasize that when comparing models, the estimation loss function should

be identical across models otherwise inappropriate comparisons will be made. The PBS
model is typically implemented using an implied volatility loss function, which conveniently
yields a linear estimator of the parameters. Implemented in this way, the PBS model is
easily outperformed by structural stochastic volatility or GARCH option valuation models
implemented with an estimation loss function which matches the evaluation loss. Our em-
pirical study shows, however, that when the PBS model is implemented by using the same
estimation loss function as that of the structural model, the PBS model actually outperforms
the standard structural model both in- and out-of-sample.
Third, by implementing the PBSmodel fairly, we introduce a new PBSmodel with aligned

loss functions, that performs much better than the prior model. This modified PBS model
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represents a tougher benchmark against which future structural models can be compared.
The paper proceeds as follows. In Section 2, we first discuss the different loss functions

used in empirical option valuation and provide an overview of their use in the literature. We
then present the Practitioner Black-Scholes approach as implemented by DFW and introduce
our modification of their approach. Finally, we briefly summarize the relevant theoretical
results on estimation under different loss functions. Section 3 presents our main empirical
results and Section 4 compares the PBS model to Heston’s (1993) model and further explores
the results. Section 5 conducts various robustness checks and Section 6 concludes.

2 Methodology

The choice of loss function is particularly important when estimating option valuation mod-
els because they have several purposes, for example, hedging, speculating or market making.
Different purposes, in turn, naturally suggest different loss functions. Because the specifica-
tion of a loss function implicitly amounts to the specification of a statistical model (Engle
(1993)), one might expect that the choice of loss function would be a hotly debated issue
in the option valuation literature. This is not the case. In fact, in the extensive and grow-
ing literature on option valuation, the specification of the loss function has not received
much attention compared with other issues such as model specification and the estimation
of continuous-time processes underlying option models. For example, the excellent literature
overview in Campbell, Lo, and MacKinlay (1997) does not list any contributions relating
to the importance of the selection of the loss function. Moreover, existing discussions of the
loss function in option valuation center on the statistical environment needed to estimate
the parameters of a theoretical option valuation model, implicitly ignoring the impact the
loss function has on the specification of the statistical model. The unwritten rule seems to
be that when the model parameters are “properly” estimated in-sample, they automatically
qualify for use in any out-of-sample evaluation exercise, no matter what its objective is. In
contrast, we postulate that in most situations, one can minimize out-of-sample loss by using
the same loss function in estimation. The motivation for our recommendation is the insight
that the choice of the loss function is indeed part of the model specification. Common sense
then suggests that one use identical (statistical) models in estimation and evaluation.
The use of different loss functions at the estimation and evaluation stages is generally

accepted and widely used in the literature. For example, Bakshi, Cao, and Chen (1997) use
$MSE in estimation, but %MSE as well as $MSE in the evaluation stage, where $MSE
denotes mean-squared absolute option pricing errors and %MSE denotes mean-squared rel-
ative option pricing errors. IVMSE stands for mean squared absolute implied volatility
error. Rosenberg and Engle (2002) use $MSE in estimation, but % hedging errors in evalu-
ation. Hutchinson, Lo and Poggio (1994) use an MSE-based option price divided by exercise
price, yet evaluate the model out-of-sample using hedging errors, among other things. Sev-
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eral papers estimate model parameters from option prices using an estimation loss function
based on the statistical properties of the underlying process or the statistical structure of the
measurement errors (see, e.g., Renault (1997); Jacquier and Jarrow (2000)) and then pro-
ceed to evaluate the models out-of-sample using a different loss function. Pan (2002) uses
a generalized method of moments (GMM) loss function in estimation and implied volatility
mean squared error, IVMSE, in evaluation. Chernov and Ghysels (2000) estimate para-
meters using efficient method of moments (EMM), and evaluate models using $MSE and
%MSE loss functions. Benzoni (2002) estimates parameters using both EMM and $MSE
(normalized by the index value) and proceeds to evaluate the model using $MSE (again
normalized). Finally, whereas most recent papers estimate option valuation parameters us-
ing option data or option data as well as returns data, until recently many option valuation
studies were conducted by estimating option model parameters from asset returns and in-
serting these parameters into option valuation formulae out-of-sample. Again, this amounts
to using different loss functions in-sample and out-of-sample.
Problems may arise when one compares out-of-sample errors from misaligned loss func-

tions with errors derived from models where the in-sample and out-of sample loss func-
tions are identical. The statistics literature has pointed out that changing the loss function
amounts to changing the model specification (Granger (1969); and Engle (1993)). From this
perspective, it is clear that the “correctly specified” model will yield the best in-sample fit,
but not necessarily the best out-of-sample fit. Out-of-sample, a misspecified model with
precisely estimated parameters may outperform the correctly specified model. No general
theorems exist to guide us in this matter, and thus, aligning the estimation and evaluation
loss functions serves as a rule-of-thumb. As the usefulness of this rule is an empirical ques-
tion, we are careful to state that problems may arise, but will not generally occur when
loss functions are misaligned. For example, DFW (1998) compare the out-of-sample per-
formance of the PBS model with the out-of-sample performance of deterministic volatility
models implemented with identical in- and out-of-sample loss functions. The conclusion of
DFW is that the valuation performance of the PBS model compares favorably with that of
the deterministic volatility models. Because the implementation of the PBS model proposed
in this paper will most likely not deteriorate the model’s performance, the conclusions of
DFW will therefore be reinforced when the PBS model is implemented properly. This may
not be the case, however, for the studies by Heston and Nandi (2000) and Garcia, Luger,
and Renault (2000). Both these papers use the $MSE loss functions for the out-of-sample
comparison, but use the implied volatility based loss function for the PBS model in estima-
tion. Heston and Nandi (2000) then compare the PBS model with a GARCH model which
has identical in-sample and out-of-sample loss functions. They find that the GARCH model
improves upon the performance of the PBS model. Garcia, Luger, and Renault (2000) com-
pare PBS to a new Generalized Black-Scholes model, which is also implemented with aligned
loss functions and is also found to dominate the PBS model. The potential problem is that
both studies use the PBS model as an evaluation benchmark, but the performance of the
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benchmark is not as good as it would be if it were implemented using the appropriate loss
function. Note that while these papers do not align the loss functions, it does not mean that
the authors are unaware of the limitations of this approach. The papers implement the PBS
model as a benchmark, and in doing so they follow the standard practice of estimating the
parameters using the implied volatility loss function.
We now analyze the impact of the loss function in more detail. First, we describe the

loss functions most commonly used to estimate and calibrate parameters in empirical option
valuation. Then we introduce the PBS model which can be viewed as an ad-hoc model of the
well-known “smile” and “smirk” patterns exhibited by standard derivatives prices. Finally,
we discuss how different loss functions imply different model specifications, which in turn
motivates the ensuing empirical study.

2.1 Option model evaluation

The performance of different option valuation models is often evaluated using mean-squared
dollar errors; that is, the loss function is given by

$MSE(θ) ≡ 1

n

nX
i=1

(Ci − Ci(θ))
2 (1)

where Ci and Ci(θ) are the data and model option prices, respectively, and n is the number
of option contracts used. Note that although we estimate new parameters each day, we omit
the time subscript, t, on the parameters in this section in order to save on notation. The
$MSE loss function has the advantage that the errors are easily interpreted as $-errors once
the square root is taken of the mean-squared error. However, the relatively wide range of
option prices across moneyness and maturity raises the problem of heteroskedasticity for
$MSE-based parameter estimation.
Also, because the $MSE loss function implicitly assigns a lot of weight to options with

high valuations (in-the-money and long time-to-maturity contracts) and therefore high $-
errors, some researchers instead favor the relative or percent mean-squared error loss func-
tion,2 defined as

%MSE(θ) ≡ 1

n

nX
i=1

((Ci − Ci(θ))/Ci)
2 (2)

where that the %-sign is a convenient short-hand for relative loss. We do not in fact multiply
the relative loss by 100, and thus the losses are not expressed in percent but rather decimals.
The %MSE loss function has the advantage that a $1 error on a $50 dollar option carries

less weight than a $1 error on a $5 option, which is sensible from a rate-of-return perspective.

2Note that the %-sign below is just a convenient short-hand for relative loss. We do not in fact multiply
the relative loss by 100 anywhere, and so the losses are not actually expressed in percent but in decimals.
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The disadvantage is that short time-to-maturity out-of-the money options with valuations
close to zero will implicitly get assigned a lot of weight and can thus create numerical
instability.
Based on the above considerations of heteroskedasticity, and moreover on the market

convention of quoting option prices in terms of volatility, some researchers favor estimating
option valuation models minimizing the MSE of the implied Black-Scholes volatility from
the option. We therefore define the implied volatility MSE as

IVMSE(θ) ≡ 1

n

nX
i=1

(σi − σi(θ))
2 , (3)

where the implied volatilities are

σi = BS−1(Ci, Ti, Xi, S, r) and σi(θ) = BS−1(Ci(θ), Ti, Xi, S, r), (4)

and BS−1 is the inverse of the Black-Scholes formula, Ti the time-to-maturity, Xi the strike
price, S the price of the underlying stock, and r the riskless interest rate.
This paper only considers the loss functions in (1), (2), and (3). As discussed above,

a number of other estimation loss functions are used in the literature. Functions based on
hedging or speculation loss could potentially be more interesting, but we focus on the three
functions listed here as they are arguably the most prevalent in previous work.

2.2 The Practitioner Black-Scholes model

We illustrate the importance of the estimation loss function using the simplest model possible,
the Practitioner Black-Scholes (PBS) model. In the PBS model, implementation is done in
three steps. First the Black-Scholes implied volatility is calculated for each observed option.
Second, the implied volatilities are regressed on different polynomials in T and X using
simple ordinary least squares (OLS). Third, the fitted values for volatility are plugged back
into the Black-Scholes formula to obtain the practitioner model price.
DFW consider different implied volatility functions. We limit our attention to the most

general model they investigate, which is of the form3

σ = θ0 + θ1X + θ2X
2 + θ3T + θ4T

2 + θ5XT + εIV (5)

and where the fitted value of the implied volatility is

σ(θ) = θ0 + θ1X + θ2X
2 + θ3T + θ4T

2 + θ5XT. (6)

3DFW consider switching between specifications based on the number of maturities available in their data
set on any given day. We use the specification in (5) on all but one day, for which our data set contains only
few maturities; on that day we omit the T 2 term.
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Notice that estimating (5) by OLS amounts to letting the estimation loss function be
IVMSE. OLS solves

θIV = Argmin
θ

IVMSE(θ) ≡ Argmin
θ

1

n

nX
i=1

(σi − σi(θ))
2 = (Z 0Z)−1Z 0σ, (7)

where Z is the matrix of regressors from the implied volatility model. Written in terms of
option prices rather than volatilities, the IVMSE loss function implies an error specification
of the form

C = CBS(σ(θIV ) + εIV ). (8)

Thus, the dollar price is a nonlinear function of the IVMSE error term.
In order to evaluate the model, the estimate of the parameter vector, θIV , is plugged back

into the implied volatility model, which in turn is plugged into the Black-Scholes formula. It
is clear from the above equation, however, that simply plugging σ(θIV ) into the Black-Scholes
formula will yield a biased estimate of the observed call price. While OLS will ensure that
E[εIV ] = 0, the nonlinearity of the dollar option price in volatility and thus in εIV implies
that

E[C] 6= CBS(σ(θIV )). (9)

Ignoring this inequality, the PBS model is typically assessed using

$MSE(θIV ) =
1

n

nX
i=1

¡
Ci − CBS

i (σi(θIV ))
¢2

(10)

or

%MSE(θIV ) =
1

n

nX
i=1

¡¡
Ci − CBS

i (σi(θIV ))
¢
/Ci

¢2
(11)

In the above framework, the estimation loss function, defined on implied volatilities,
is different from the evaluation loss function, defined on dollar or percent pricing errors.
While this is a convenient and easily implemented procedure, it is inappropriate if the model
is assessed in terms of a $MSE or %MSE loss function. If the evaluation loss function
is $MSE, the appropriate procedure is to use nonlinear least squares (NLS) to directly
estimate θ as follows:

θ$ = Argmin $MSE(θ) ≡ Argmin
θ

1

n

nX
i=1

¡
Ci − CBS

i (σi(θ))
¢2
. (12)

One way to see the consequences of this choice of evaluation loss function is that implicitly
the model under consideration is now

C = CBS(σ(θ$)) + ε$. (13)
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In spite of the fact that the functional form for implied volatility is identical, this model is
quite different from the model estimated using the IVMSE loss function, due to the new
error structure. Whereas the model estimated in (7) is linear in the parameters the model
in (13) is not. The change of loss function corresponds to a nontrivial transformation of
the model and the choice of loss function cannot be seen as separate from the choice of
model. By choosing an evaluation loss function, one chooses a very important dimension
of the specification of the model. This issue has been given some attention in the statistics
literature,4 but it is all too often ignored in option valuation applications.
The critical impact of the choice of loss function can, of course, also be illustrated in

the case of the relative error loss function %MSE. In this case, the model parameters are
obtained by solving the following optimization problem

θ% = Argmin%MSE(θ) ≡ Argmin
θ

1

n

nX
i=1

¡¡
Ci − CBS

i (σi(θ))
¢
/Ci

¢2
. (14)

Written in terms of dollar option prices, the %MSE loss function implies the following error
structure:

C = CBS(σ(θ%)) + Cε%. (15)

It is clear from comparing (15) with (13) that the choice of the relative error loss function in
(14) over the dollar loss function in (12) really amounts to the choice of a different model: the
use of the relative error loss function implies a multiplicative heteroskedastic error structure,
in contrast to the error structure in (13).
It is clear that the three different estimation loss functions implicitly correspond to three

different model specifications, even though they are all intended to estimate the parameters
of the PBS model (5). Consequently, using an estimation loss function which is different
from the evaluation loss will result in suboptimal estimates in terms of evaluation loss.
We close this section by noting that we do not promote any particular loss function per

se; rather, we stress the importance of being consistent in the choice of loss function. In
order to obtain the best possible fit, the loss function used in evaluation should also be used
in estimation. Similarly, if a researcher is interested in comparing several models, care should
be taken that the estimation loss function is identical across models, otherwise inappropriate
comparisons will be made.

4See, for example, Granger (1969), Weiss and Andersen (1984), Engle (1993), and Weiss (1996). For an
option pricing application see Garcia and Gencay (2000).
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3 Empirical results

3.1 Data

We analyze the methodological issues outlined above using a very standard data set, namely
the S&P 500 call option prices on 755 days in the period from June 1, 1988 through May
31, 1991. The data were graciously provided to us by Gurdip Bakshi and are practically
identical to the data used in Bakshi, Cao, and Chen (1997). We limit ourselves here to a few
important features of the data and refer the reader to their study for further details. The
data set is well suited for our empirical analysis because options written on the S&P 500
are the most actively traded European-style contracts. Particular care is taken to adjust the
S&P 500 spot index series for dividend payments and to obtain synchronous recording of
stock and option prices. The resulting data set contains a wide variety of option quotes for
different values of moneyness and maturity. Table 1, Panel A lists the number of contracts
for a set of maturity and moneyness bins, where S/X denotes the option’s moneyness and
DTM stands for days to maturity. To be exact, we are sorting the data by (S − Di)/Xi,
where Di is the present value of dividends accruing to option i until its expiration.
Table 1, Panel B reports the average price for option contracts with different moneyness

and maturities. For our purpose, the most important observation in Table 1, Panel B is the
large difference in option prices across maturities and moneyness; expensive contracts will
implicitly receive much more weight in the $MSE loss function than cheap contracts. In
Table 1, Panel C we report the average implied Black-Scholes volatilities from the call prices
in Table 1, Panel B. Notice that in general the implied volatilities are much less variable
across entries in the table than are the call prices themselves. Notice also that the well-known
post-crash smirk is apparent in every column, but that it is most apparent at the shortest
maturity.
As mentioned above, we investigate the importance of the choice of loss function by

estimating the relevant parameters for each of the 755 daily cross-sections. Figure 1 indicates
that the optimization problem under study can be substantially different for different days.
To illustrate the variation over the sample, we depict the average Black-Scholes implied
volatility calculated on each of the 755 days in the sample. Notice that implied volatility
changes through time but that swings in average implied volatility seem to be relatively
persistent across time. This finding suggests that the out-of-sample performance of the daily
models may actually turn out to be fairly satisfactory if the parameters are appropriately
estimated.

3.2 Empirical loss estimates

The main results of the paper are contained in Figures 2.A-2.B and in Table 2. For each
day in the sample we repeat the following exercise. First, we estimate the parameter θ
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characterizing the implied volatility function in (5) using three different loss functions. We
refer to these three estimates of θ as θt,$, θt,%, and θt,IV , , respectively, where the t subscript
indicates that the estimate is obtained using the t-th day (or cross-section) in the sample.
The first estimate, θt,$, is obtained by minimizing the $MSE loss function in (1). The
second estimate, θt,%, is obtained by minimizing the %MSE loss function (2). The third
estimate, θt,IV , is obtained by minimizing the IVMSE loss function in (3). We then use these
estimates to evaluate the model’s valuation performance in- and out-of-sample for different
loss functions. This exercise is similar to Dumas, Fleming and Whaley (1998). Brandt and
Wu (2002) and Hull and Suo (2002), on the other hand, investigate the usefulness of the
PBS model fitted to standard European options in-sample for pricing other options out-of-
sample.5

Possibly the most interesting exercise is to evaluate the different loss functions one day
out-of-sample. Consider the second row of pictures in Figure 2.A. These pictures show the
square root of MSEs (RMSE) for the dollar-based loss function (1) evaluated at t+ 1 using
parameter estimates obtained at t. In the left panel the estimate used is θt,IV , which is
obtained by minimizing the “wrong” loss function (3). In contrast, in the right panel, the
estimate θt,$ is obtained by minimizing the “correct” loss function (1). The differences in
RMSE between the two panels are striking. While on a few occasions (especially in the
second half of the sample) the RMSE is quite large in the right panel, it is often minuscule
when compared to its analog in the left panel.
The other panels in Figure 2.A contain results for related exercises. In the two top panels

we present the same exercise using estimates θt,IV and θt,$, but with the RMSE computed for
the same day t (in-sample). Again we observe that the RMSE in the left panel is much larger
than in the right panel. The third and fourth row of panels again use the estimates θt,IV and
θt,$, but now the RMSE is evaluated at days t + 5 and t + 20, respectively, corresponding
roughly to one-week and one-month ahead. While the deterioration in loss is obvious for
both sets of estimates as the horizon lengthens, the $-estimates appear to clearly outperform
the IV-estimates even at the 20-day horizon.
Figure 2.B presents results for an exercise that is analogous to the one presented in Figure

2.A, except that the RMSEs are now calculated from the percentage-based loss function (2)
evaluated at t, t + 1, t + 5, and t + 20. The estimates used correspond to those obtained
from the “wrong” loss function θt,IV and the “correct” loss function θt,%. The conclusion from
Figure 2.B is identical to that obtained from Figure 2.A: the use of the wrong loss function in
estimation leads to dramatic underperformance in the in-sample and out-of-sample RMSE.
Table 2 summarizes the information in Figures 2.A and 2.B by presenting the average

5Our data set contains one day (day 348) with only few available contracts at longer maturities. Fol-
lowing Dumas, Fleming and Whaley (1998), on that day we exclude the squared maturity term from the
implied volatility polynomial. Including the squared maturity term on that day results in unusual parameter
estimates, but it changes the quantitative loss estimates only marginally and does not change any of our
qualitative conclusions.
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RMSE computed over the 716 days in the prediction sample. In Figures 2.A and 2.B and
in Table 2, we omit the first 39 observations in order to conduct out-of-sample analysis and
to ensure comparability with results in later tables, which use longer estimation samples.
Consider first the leftmost three columns labelled “Raw Loss.” The diagonal in each part
of the table corresponds to the loss from using the relevant loss function in estimation.
Off-diagonal entries report the losses from using estimates that minimize a loss function
different from the relevant one. For example, for the results in Figure 2.A, we look in the
second column. We see that on average, when using the appropriate loss function to obtain
the estimates θt,$, the one-day out-of-sample RMSE is 0.4901, whereas if the wrong loss
function is used to obtain θt,IV , the average RMSE is 0.8708. For 5-days out-of-sample, the
corresponding RMSEs are 0.6864 and 1.0510, respectively. Even at the 20-day horizon, the
RMSEs are quite different at 1.4373 and 0.9760, respectively.
The data in Figure 2.B is summarized in the third column, where again, we see large

average improvements in RMSEs from using the appropriate loss function. Finally, in the left
column we present evidence on an estimation exercise not reported in Figure 2. While most
studies cited above use the dollar-based loss function (1) or percentage-based loss function (2)
for out-of-sample performance evaluation, we investigate which average RMSEs one would
obtain when evaluating the square root of the IVMSE (3) out-of-sample. It can be seen
that at t, t + 1, or t + 5, we obtain the lowest RMSEs by using the appropriate in-sample
loss function, but at t + 20 the $-estimates actually slightly outperform the IV-estimates
even when using the IV RMSE metric. Notice also that the differences across estimates in
IV RMSE loss are generally much smaller than the differences across estimates in $RMSE
and %RMSE loss.
In order to facilitate the comparison of different RMSEs, the rightmost three columns

of Table 2 report the average RMSEs from before, divided by the RMSE from the relevant
loss function. Notice that except for the IV RMSE loss at t+20, the relative loss is always
at least one. Notice also that the IV estimates fare particularly poorly when used in the
other loss functions. These tables therefore illustrate our main point that it is important
to use the relevant loss function. As a rule of thumb, researchers should be consistent in
their choice: the estimation loss function should be the same as the evaluation loss function.
Even though some loss functions have obvious econometric problems associated with them,
such as heteroskedasticity and numerical stability issues, our analysis indicates that these
concerns are generally outweighed by the gains from matching loss functions. However, our
results suggest that a researcher indifferent on the choice of loss function may prefer the
$MSE loss function.
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4 Exploring the results

4.1 Comparison with a structural model

So far the empirical analysis has focused on documenting the improvement in the evaluation
loss when the appropriate estimation loss is used. We now ask if the loss function issue is
important enough to reverse existing empirical rankings of models. Interestingly, it is.
To document this, we compare the PBS model’s valuation performance with the valuation

performance of the classic stochastic volatility model proposed by Heston (1993). Heston’s
model assumes that the stock price under risk neutrality evolves according to

dS(t) = rSdt+
p
v(t)Sdz1(t) (16)

with the variance process

dv(t) = κ(ϕ− v(t))dt+ σ
p
v(t)dz2(t), (17)

where dz1(t) and dz2(t) are standard Brownian motions with correlation coefficient ρ. It is
well-known from a number of recent papers that the empirical performance of this model is
not entirely satisfactory and that extending the model can improve its pricing performance
(see Andersen, Benzoni, and Lund (2002); Bakshi, Cao, and Chen (1997); Benzoni (2002);
Chernov and Ghysels (2000); Jones (2001, 2002); Pan (2002)). Here, we simply want to
compare different applications of the PBS model to a mainstream structural model that is
easy to implement and which fits the data reasonably well. The Heston model is attractive
because it yields an analytical solution for the option price (up to a numerical integral that
can be evaluated quickly and accurately). This solution can be found in Heston (1993) and
Bakshi, Cao, and Chen (1997). We implement this model by estimating the four parameters
κ, ϕ, σ, and ρ. Also, because we estimate the model on a day-by-day basis, we follow the
example of Bakshi, Cao, and Chen (1997) and estimate the initial conditional volatility,
v(0), as a fifth parameter each day. However, we estimate these parameters for all three
loss functions, $MSE, %MSE, and IVMSE. We then proceed to evaluate the model in-
sample and out-of-sample and to compare the pricing errors with those of the PBS model.
The daily re-estimation approach is inconsistent with the theory, which assumes that the
parameters are constant over time. We choose this approach to bring the implementation of
the structural model as close as possible to that of the PBS model. The same approach is
taken in Bakshi, Cao, and Chen (1997). To evaluate the model, the expected future variance
is calculated as

Et [v(t+ τ)] = ϕ+ e−κτ [v(t)− ϕ] , (18)

where τ is the forecast horizon.
Table 3 presents average RMSE losses for the Heston model using the same 716 days of

options contracts that are used to generate the empirical results in Table 2. To facilitate
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comparisons between the models, in Table 3 we repeat certain entries from Table 2. Certain
contracts have been removed due to problems inverting some of the Heston model prices
when using the IVMSE estimation loss function. To ensure internal comparability within
Table 3, these contracts are removed in all cells and as a result, the numbers in Table 3
are not exactly the same as the numbers in Table 2. They are very similar, however. The
inversion problems are worst at the 20-day forecast horizon, which therefore has been omitted
from Table 3. More detailed evidence on the day-by-day performance of the Heston model
is reported in Figure 3.
Table 3 clearly illustrates that the use of the appropriate loss function is of critical

importance. For instance, consider the performance of the Heston model when the $RMSE
loss function is used (Panel B). For the in-sample evaluation the average $RMSE over 716
days is 0.3838 (middle column). Compare this with the PBS model as implemented in DFW
(left column). We might conclude that the Heston model beats the benchmark PBS model,
because 0.3838 is lower than 0.6642. However, when the PBS model is implemented using
the appropriate loss function (right column), the average $RMSE is 0.2923. Therefore,
the structural model actually does not perform better than the PBS model when estimated
using the relevant loss function. Notice that while the Heston model nests the original Black-
Scholes (1973) model, it does not nest the PBS model. Therefore, it is possible for the PBS
model to have a better fit than the Heston model.
If we inspect the $RMSE loss functions evaluated out-of-sample, we see that the average

1-day and 5-day out-of-sample $RMSEs are 0.5727 and 0.8173, higher than 0.4864 and
0.6811, respectively, for the PBS model estimated using $MSE. If we instead use the
standard IVMSE-implementation of the model, we would conclude that 0.5727 and 0.8173
are lower than 0.8406 and 1.0124, respectively.
Inspection of Table 3, Panel C shows that identical conclusions obtain when we evaluate

%RMSE loss functions. For the in-sample evaluation, the average Heston %RMSE of
0.0363 is lower than 0.0958 but higher than 0.0309. For the 1-day out-of-sample exercise,
the average Heston %RMSE of 0.0650 is lower than 0.1184 but higher than 0.0597. Finally,
for the 5-day out-of-sample exercise, the average Heston %RMSE of 0.1062 is lower than
0.1439 but higher than 0.0935.
For completeness, we include in Table 3, Panel A, the Heston (1993) model estimated

using the IVMSE loss function. In this case, the standard PBS model implementation
corresponds to using the relevant estimation loss function and the left and right columns are
therefore identical in this case. Notice that, again, the PBS model performs slightly better
than the Heston model when both are estimated and evaluated using the IV RMSE metric.
In summary, the conclusions from the comparison of the Heston model with the PBS

model are robust. Regardless of whether one uses $RMSE or %RMSE loss functions, and
regardless of whether one evaluates the loss functions in-sample or out-of-sample, the PBS
model performs better than the Heston model when implemented using the appropriate loss
function. However, when the PBS model is implemented using the IVMSE loss function to
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estimate the parameters, as is standard in the literature, it performs much worse than the
Heston model. When both models are estimated and evaluated using the IV RMSE metric,
the PBS model also slightly outperforms the Heston model.
We close this section by re-emphasizing that these findings by no means indicate that

the PBS model is superior to structural models. The PBS model is an ad-hoc curve-fitting
technique and lacks the theoretical and intuitive background of structural models. In par-
ticular, structural models provide the key link between the dynamics of the option price and
the dynamics of the underlying asset price. The improvement in fit relative to a structural
model therefore only indicates its usefulness as a benchmark, and, therefore, does not qualify
it as a genuine competitor to structural models.

4.2 Mincer-Zarnowitz decomposition

Is it possible to provide some intuition for why the IVMSE-based estimates seem so much
worse than the $-based and %-based estimates as seen in Tables 2 and 3? Figures 4.A and
4.B graph the estimates of the coefficients in the PBS implied volatility relation (5) for all
755 days. The panels on the left use the IV loss function (3), the panels in the middle use
the $-based loss function (1), and the panels on the right use the percentage loss function
(2). The problem with the IVMSE estimates for the PBS model seems to be that, although
they are obtained from linear regression, they are much more volatile than the estimates
from the other loss functions obtained using nonlinear estimation.
This parameter variability, evident in Figure 4, may provide an intuitive explanation

for the results in Table 2, which, in turn, indicates that the out-of-sample performance of
the $-estimates is relatively good while that of the IV estimates is relatively poor. Table 4
attempts to expand on the parameter variability explanation. For the $MSE loss function,
we follow Karolyi (1993) and calculate the Mincer-Zarnowitz (1969) decomposition of the
MSE into bias-squared, inefficiency, and random variation for the PBS and Heston models.
In general we have

MSE = [E[y]−E[ŷ]]2 + (1− β)2 V ar(ŷ) +
¡
1−R2

¢
V ar(y), (19)

where y is the variable of interest and ŷ is its forecast. From the regression of y on ŷ and a
constant, we obtain the slope coefficient, β, and the regression fit, R2.
For a given option valuation model we have the $MSE decomposition

$MSE(λ̂) =
h
E[C]−E[C(λ̂)]

i2
+ (1− β)2 V ar(C(λ̂)) +

¡
1−R2

¢
V ar(C), (20)

where C is the observed market price and C(λ̂) is the model price calculated from a vector
of parameter estimates, λ̂. We run the Mincer-Zarnowitz regressions on each day for the
two models and for the in-sample as well as 1-, 5-, and 20-day out-of-sample forecasts.
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Table 4 reports the average MSEs and their decompositions across days 40 through 755 of
the sample. Note that in order to highlight the decompositions, we report MSEs and not
RMSEs, in contrast with earlier tables.
The four left columns of Table 4 show the Mincer-Zarnowitz decomposition of the $MSE

loss from the Heston model and the rightmost four columns show the decomposition of the
PBS model. Naturally, most of the in-sample $MSE arises from random variation. As the
forecast horizon increases, bias becomes an increasingly important factor, probably arising
from systematic changes in overall market volatility which is not captured in the static
models considered here. The contribution to $MSE from inefficiency for the IV estimates
is surprisingly modest. Indeed, the majority of the difference in $MSE across the three
sets of estimates appears to be random variation. From the perspective of the $MSE loss,
the large variation in the IV parameter estimates does not translate into excessive variation
in the forecasted option prices. These results hold for the PBS as well as Heston model.
Notice also that contrary to what one might expect, the Heston model does not reduce
the bias compared to the PBS model even 20-days out. This could of course be due to
the implementation of the model; following Bakshi, Cao, and Chen (1997), the parameters
including the spot volatility are re-estimated daily.

5 Robustness checks

The main conclusion from Table 2 is that there are generally large gains to be had from
matching the estimation loss function and evaluation loss functions. In this section we
perform two types of checks to assess the robustness of this finding. First, to check the effect
on our results of the option valuation function shifting over time, we conduct a “same-day
out-of-sample” experiment. Second, to check the effect of the relatively small daily estimation
samples, we extend the rolling samples to five days and twenty days , respectively. We also
perform (not reported here) a third robustness experiment relying on Derman (1999), who
models implied volatility in terms of moneyness and maturity rather than strike price and
maturity. We implement Derman’s model in a manner identical to the implementation of the
DFW specification in Table 2. The Derman model leads to the same qualitative conclusions
as the DFW model.

5.1 Jackknife estimation

From the Mincer-Zarnowitz analysis in Table 4, it is apparent that as the forecast horizon
lengthens, the bias increases, presumably due to systematic changes in latent variables. As
the PBS model considered here is completely static, a relevant question to ask is whether the
key empirical findings in Table 2 will hold in an out-of-sample experiment in which changes
in latent variables do not play a role.
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In order to answer this question we run the following experiment, which we refer to
as Jackknife estimation, borrowing a well-known term from statistics. The PBS model
is estimated separately for each contract using only the remaining contracts on the same
day. The coefficients are again estimated using the three different estimation loss functions,
$MSE, %MSE, and IVMSE. Each set of estimates is used to calculate the evaluation
error only of the contract omitted from that particular estimation sample. Table 5 shows
the results. The columns under the Raw Loss heading report the daily average RMSE across
days 40 through 755. The numbers in the Relative Loss columns have been divided by the
diagonal elements where the estimation and evaluation loss functions coincide.
The main result here is that matching the estimation and evaluation loss functions gener-

ates the lowest loss in each case. This confirms our earlier findings. As expected, the RMSEs
are all higher than the in-sample raw loss RMSEs in Table 2. When we compare Table 5
RMSEs with those in the 1-day out raw loss panel of Table 2, we see that the $-estimates
and %-estimates generate Jackknife losses that are lower than the RMSEs in Table 2. The
IV estimates, on the other hand, generate Jackknife $RMSE and IV RMSE losses which
are more comparable to the 5-day out-of-sample RMSEs. This corroborates our second find-
ing, that the IV estimates perform relatively poorly overall. The IV estimates are highly
variable and suffer greatly from the estimation sample being reduced by one observation in
the Jackknife estimation.
The Jacknife losses, which are same-day out-of-sample losses, are generally lower when

the estimation and evaluation loss functions coincide. We therefore conclude that the ben-
efits from matching loss functions do not arise only from ignoring changes over time in the
underlying state variables.

5.2 Extending the estimation sample

The deterioration in the loss associated with the IV estimates when one contract is excluded
raises the question of the degree to which our empirical findings are due to the relatively
small size of the samples used in estimation. While daily re-estimation of the model using
only one day of data has the advantage that we can pick up time-variation of the option-
valuation relationship, this benefit may come at the cost of imprecision in the parameter
estimates. To address this concern, we repeat the daily analysis of the PBS model in Table
2, but use rolling 5- and 20-day estimation samples instead of rolling 1-day samples.
Table 6 shows the results from estimating the PBS model daily using the current and

most recent four days’ data and our three different estimation loss functions. Each set of
estimates is used to evaluate the daily root mean-squared error (RMSE) loss for the three loss
functions. Losses are calculated on the last day of each estimation sample (in-sample) as well
as 1-, 5-, and 20-days out-of-sample. The Raw Loss columns report the daily average RMSE
across days 40 through 755. The numbers in the Relative Loss columns have been divided
by the diagonal elements, where the estimation and evaluation loss functions coincide.
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The main result again is that matching the estimation and evaluation loss functions is
usually optimal. As before, the only exception is the slightly lower IV RMSE loss for the
$-estimates at the 20-day horizon. Table 6 also confirms that, when used in another loss
function, the $-based estimates tend to perform relatively better than the IV-based estimates.
Notice also that due to the larger estimation sample, the in-sample RMSEs are higher in
Table 6 than in Table 2. This deterioration in in-sample fit can be seen as an indication of the
quantitative importance of daily parameter re-estimation. Table 7 repeats the experiment
of Table 6 using rolling 20-day estimation samples. While the quantitative results change
marginally, the qualitative conclusions remain the same.

6 Conclusions

This paper raises an important methodological question regarding the estimation of para-
meters for use in option valuation models. Until now, the literature has mainly focused on
the choice of a theoretical option valuation model. Once the theoretical model is chosen, the
main concern is largely the efficient econometric estimation of the parameters characterizing
the model. While there is concern in the literature about the role of the loss function in
these estimation procedures, the application of the loss function in the evaluation stage is
little more than an afterthought. We argue that the relevant discussion should not start out
by discussing how to estimate the parameters, but rather by stating what functional form
the evaluation (typically out-of-sample) loss function takes. The specification of the loss
function is dictated by the purpose of the empirical exercise, for instance, it may be related
to a hedging problem or a risky investment strategy.
It may be difficult at first to intuitively grasp why this specification issue is of more than

philosophical importance. The key is that one should stop thinking of the specification of a
theoretical model as separate from the choice of the loss function. When operationalizing a
deterministic theoretical model, whether for estimation or evaluation purposes, one has to
impose a statistical structure. This statistical structure is an integral part of empirical model
specification, and the choice of loss function is a major part of the statistical structure. Our
recommendation, to align the estimation and evaluation loss functions, differs from existing
practice, which focuses on the efficient estimation of a set of parameters regardless of the
loss function used when evaluating the model.
The paper demonstrates that our recommendation works very well in practice. This is

illustrated by focusing on the simplest model available in the literature that attempts to ac-
count for the well-known biases in the Black-Scholes model, namely, the Practitioner Black-
Scholes (PBS) model. The PBS model is typically implemented with an estimation loss
function that different from the evaluation loss function. Our analysis shows that this proce-
dure generates a problem that is quantitatively important, with the implementation used in
the literature leading to out-of-sample RMSEs that are more than twice the lowest-possible
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RMSE using the proper estimation loss function. This finding has serious implications both
for future studies and papers that have implemented PBS in the traditional way. To demon-
strate these implications, we compare the empirical performance of the PBS model to the
performance of the well-known stochastic volatility model in Heston (1993). We find that
when the PBS model is implemented using an inappropriate loss function, the PBS model
performs much worse than the Heston model. However, the PBS model performs somewhat
better than the Heston model when the appropriate loss function is used. Thus, our modi-
fied PBS model represents a new and tougher benchmark against which the performance of
future structural models can be measured.
At a more general level, the results in this paper have implications for any situation in

which the loss function can be identified. For example, our results suggest that the best
possible parameter estimates for a hedging exercise will likely be obtained using a hedging-
based loss function, whereas a speculator would optimally obtain parameter estimates using
a loss function consistent with the objective of speculation. In future work, we will inves-
tigate these application oriented loss functions, which differ from the statistical ones used
in this paper. It must also be noted in this respect that the most appropriate option valu-
ation model to be used for such purposes is probably not the PBS model, but a structural
model. The PBS model is used in this paper as an example, because its simplicity facilitates
the communication of our message. For many more realistic exercises, a structural model
designed to keep parameters constant across time may be more appropriate. An important
reason for this is that the loss function for a speculator or a market-maker often involves
illiquid contracts such as exotic derivatives; in such situations it is necessary to use structural
models that allow for extrapolation across contracts or time, rather than an ad-hoc model,
which by its very nature requires frequent re-calibration using liquid contracts.
For certain purposes it may not be possible to identify the relevant loss function. In this

case, our results indicate that the $MSE estimates perform the best across different loss
functions. The $MSE may thus serve as a good general-purpose loss function in option
valuation applications. Finally, we stress that when one compares different models, the
estimation loss function should be the same otherwise unfair comparisons will be made.
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Table 1
The option data are tabulated in moneyness and maturity bins. We use daily closing prices
of European call options written on the S&P 500 index. The sample starts on June 1, 1988
and ends on May 31, 1991 for a total of 755 days. DTM denotes days to maturity and S/X
denotes moneyness defined as the S&P 500 index value over the option strike price.

DTM < 60 60<DTM<180 180 < DTM Total
S/X < .94 674 3,075 2,552 6,301
.94 < S/X < .97 2,058 2,049 1,014 5,121
.97 < S/X < 1.00 2,604 1,978 963 5,545
1.00 < S/X < 1.03 2,445 1,744 803 4,992
1.03 < S/X < 1.06 2,206 1,501 731 4,438
1.06 < S/X 4,661 4,734 2,690 12,085
Total 14,648 15,081 8,753 38,482

DTM < 60 60<DTM<180 180 < DTM All
S/X < .94 1.53 5.09 10.30 6.82
.94 < S/X < .97 2.60 9.58 18.81 8.60
.97 < S/X < 1.00 5.29 14.87 25.00 12.13
1.00 < S/X < 1.03 11.02 21.25 31.32 17.86
1.03 < S/X < 1.06 18.44 28.06 37.19 24.78
1.06 < S/X 39.55 49.85 62.41 48.67
All 18.58 25.19 33.09 24.47

DTM < 60 60<DTM<180 180 < DTM All
S/X < .94 0.1792 0.1719 0.1676 0.1709
.94 < S/X < .97 0.1664 0.1719 0.1767 0.1707
.97 < S/X < 1.00 0.1713 0.1820 0.1854 0.1775
1.00 < S/X < 1.03 0.1899 0.1936 0.1966 0.1923
1.03 < S/X < 1.06 0.2161 0.2038 0.1950 0.2085
1.06 < S/X 0.3120 0.2349 0.2178 0.2608
All 0.2256 0.1987 0.1910 0.2072

Panel A. Number of call option contracts

Panel B. Average call price

Panel C. Average implied volatility from call options
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Table 2
Implied Black-Scholes volatility is modelled as a second-order polynomial in the strike price
and years-to-maturity (the PBS model). The coefficients in the polynomial are estimated
on each day of the data set using three different estimation loss functions: mean-squared
error (MSE) of implied volatility (IV), MSE of dollar prices ($), and MSE of relative prices
(%). Each set of estimates is used to evaluate the daily root mean-squared error (RMSE)
loss from the three loss functions. Losses are calculated using the estimates in-sample as
well as 1-, 5-, and 20-days out-of-sample. The Raw Loss columns report the daily average
RMSE across days 40 through 755. The IVRMSE and %RMSE are reported in decimals
and $RMSE in dollars. The numbers in the Relative Loss columns have been divided by the
diagonal elements, where the estimation and evaluation loss functions coincide.

Relative loss
IVRMSE $RMSE %RMSE IVRMSE $RMSE %RMSE

IV estimates 0.0163 0.6809 0.0970 1.0000 2.3179 3.1469
$-estimates 0.0273 0.2937 0.0608 1.6782 1.0000 1.9707
%-estimates 0.0327 0.5448 0.0308 2.0096 1.8546 1.0000

IV estimates 0.0269 0.8708 0.1208 1.0000 1.7766 2.0038
$-estimates 0.0314 0.4901 0.0762 1.1698 1.0000 1.2648
%-estimates 0.0358 0.6820 0.0603 1.3339 1.3915 1.0000

IV estimates 0.0322 1.0510 0.1473 1.0000 1.5313 1.5749
$-estimates 0.0340 0.6864 0.1051 1.0571 1.0000 1.1238
%-estimates 0.0382 0.8467 0.0936 1.1872 1.2336 1.0000

IV estimates 0.0413 1.4373 0.2022 1.0000 1.4727 1.4084
$-estimates 0.0391 0.9760 0.1480 0.9474 1.0000 1.0308
%-estimates 0.0423 1.1061 0.1435 1.0248 1.1333 1.0000

Panel B. 1-day out

Panel C. 5-days out

Panel D. 20-days out

Raw loss

Panel A. In-sample

24



Table 3
Heston’s stochastic volatility model is estimated daily using three different estimation loss
functions: mean-squared error (MSE) of implied volatility (IV), MSE of dollar prices ($), and
MSE of relative prices (%). Each set of estimates is used to evaluate the daily root mean-
squared error (RMSE) loss from the matching estimation loss function. Average RMSE
losses are calculated across days using the estimates in-sample, as well as 1- and 5-days
out-of-sample. The losses from the Heston model (middle column) are compared with losses
from the PBS model using the IV estimates (left column) as well as using the matching loss
function estimates (right column). The IVRMSE and %RMSE are reported in decimals and
$RMSE in dollars. Certain contracts are omitted due to difficulties in inverting the Heston
model prices.

PBS Heston PBS
IV-estimates Matching estimates Matching estimates

Panel A. IVRMSE loss
IV-estimates IV-estimates IV-estimates

In-sample 0.0155 0.0176 0.0155
1-day out 0.0248 0.0252 0.0248
5-days out 0.0293 0.0297 0.0293

Panel B. $RMSE loss
IV-estimates $-estimates $-estimates

In-sample 0.6642 0.3838 0.2923
1-day out 0.8406 0.5727 0.4864
5-days out 1.0124 0.8173 0.6811

Panel C. %RMSE loss
IV-estimates %-estimates %-estimates

In-sample 0.0958 0.0363 0.0309
1-day out 0.1184 0.0650 0.0597
5-days out 0.1439 0.1062 0.0935
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Table 4
The parameters in the Heston and PBS models are estimated daily using three different
estimation loss functions: mean-squared error (MSE) of implied volatility (IV), MSE of dollar
prices ($), and MSE of relative prices (%). For the $MSE loss function we can calculate the
Mincer-Zarnowitz decomposition of the MSE into bias squared, inefficiency, and random
variation from MSE = [E[y]− E[ŷ]]2 + (1− β)2 V ar(ŷ) + (1−R2)V ar(y), where y is the
variable of interest and ŷ is its forecast. From the regression of y on ŷ and a constant, we
obtain the slope coefficient β and the regression fit R2. The Mincer-Zarnowitz regressions
are run on each day, for each of the three sets of estimates and for the in-sample as well as
1-, 5- and 20-days out-of-sample forecasts. The table reports the average MSEs and their
decompositions across days 40 through 755 of the sample.

MSE Bias Efficiency Random MSE Bias Efficiency Random
Panel A. In sample
IV estimates 0.6545 0.0185 0.0818 0.5541 0.7408 0.0021 0.0112 0.7275
$-estimates 0.2113 0.0037 0.0118 0.1957 0.1282 0.0026 0.0017 0.1238
%-estimates 0.3980 0.0244 0.0547 0.3189 0.3822 0.0079 0.0835 0.2908

Panel B. 1-day out
IV estimates 1.1633 0.1928 0.1743 0.7962 1.0556 0.1386 0.0366 0.8804
$-estimates 0.5034 0.1578 0.0331 0.3125 0.3353 0.1269 0.0151 0.1933
%-estimates 0.6954 0.1842 0.0966 0.4145 0.6103 0.1270 0.1119 0.3714

Panel C. 5-days out
IV estimates 2.2392 0.5987 0.3311 1.3094 1.4149 0.3436 0.0647 1.0066
$-estimates 1.0727 0.5293 0.0509 0.4925 0.6503 0.3309 0.0349 0.2845
%-estimates 1.2927 0.6192 0.1035 0.5699 0.9277 0.3234 0.1367 0.4676

Panel D. 20-days out
IV estimates 6.8906 1.7791 1.0217 4.0898 2.8368 0.8377 0.1564 1.8426
$-estimates 2.7728 1.4723 0.1044 1.1962 1.3503 0.8123 0.0808 0.4572
%-estimates 3.0073 1.7719 0.1335 1.1018 1.6676 0.7768 0.2011 0.6897

$-loss PBS model$-loss Heston model
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Table 5
The PBS model is estimated for each contract using only information on the remaining con-
tracts on that particular day. The coefficients are estimated using three different estimation
loss functions: mean-squared error (MSE) of implied volatility (IV), MSE of dollar prices
($), and MSE of relative prices (%). Each set of estimates is used to evaluate the daily root
mean-squared error (RMSE) loss of the omitted contracts. The Raw Loss columns report
the daily average RMSE across days 40 through 755. The IVRMSE and %RMSE are re-
ported in decimals and $RMSE is in dollars. The numbers in the Relative Loss columns have
been divided by the diagonal elements, where the estimation and evaluation loss functions
coincide.

Relative loss
IVRMSE $RMSE %RMSE IVRMSE $RMSE %RMSE

IV estimates 0.0213 1.0497 0.1408 1.0000 2.8590 2.7661
$-estimates 0.0281 0.3672 0.0699 1.3190 1.0000 1.3722
%-estimates 0.0336 0.6379 0.0509 1.5760 1.7374 1.0000

Raw loss

27



Table 6
The PBS model is estimated daily using the current and four past days of data and using
three different estimation loss functions: mean-squared error (MSE) of implied volatility
(IV), MSE of dollar prices ($), and MSE of relative prices (%). Each set of estimates is
used to evaluate the daily root mean-squared error (RMSE) loss for the three loss functions.
Losses are calculated on the last day of each estimation sample (in-sample) as well as 1-, 5-
and 20-days out-of-sample. The Raw Loss columns report the daily average RMSE across
days 40 through 755. The IVRMSE and %RMSE are reported in decimals and $RMSE
in dollars. The numbers in the Relative Loss columns have been divided by the diagonal
elements, where the estimation and evaluation loss functions coincide.

IVRMSE $RMSE %RMSE IVRMSE $RMSE %RMSE
Panel A. In sample
IV estimates 0.0233 0.8582 0.1187 1.0000 1.9604 2.2345
$-estimates 0.0303 0.4378 0.0733 1.3019 1.0000 1.3790
%-estimates 0.0357 0.6491 0.0531 1.5329 1.4829 1.0000

Panel B. 1-day out
IV estimates 0.0264 0.9291 0.1296 1.0000 1.8042 1.9452
$-estimates 0.0316 0.5150 0.0822 1.1938 1.0000 1.2334
%-estimates 0.0368 0.7099 0.0666 1.3903 1.3785 1.0000

Panel C. 5-days out
IV estimates 0.0314 1.1240 0.1589 1.0000 1.6756 1.6887
$-estimates 0.0338 0.6708 0.1056 1.0752 1.0000 1.1226
%-estimates 0.0385 0.8366 0.0941 1.2268 1.2471 1.0000

Panel D. 20-days out
IV estimates 0.0401 1.4604 0.2076 1.0000 1.5543 1.5235
$-estimates 0.0385 0.9396 0.1467 0.9609 1.0000 1.0766
%-estimates 0.0420 1.0593 0.1362 1.0479 1.1274 1.0000

Raw loss Relative loss
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Table 7
The PBS model is estimated daily using the current and nineteen past days of data and using
three different estimation loss functions: Mean Squared Error (MSE) of implied volatility
(IV), MSE of dollar prices ($), and MSE of relative prices (%). Each set of estimates is
used to evaluate the daily root mean squared error (RMSE) loss for the three loss functions.
Losses are calculated on the last day of each estimation sample (in sample) as well as 1-, 5-
and 20-days out-of-sample. The Raw Loss columns report the daily average RMSE across
day 40 through 755. IVRMSE and %RMSE are reported in decimals and $RMSE in dollars.
The numbers in the Relative Loss columns have been divided by the diagonal elements where
the estimation and evaluation loss functions coincide.

IVRMSE $RMSE %RMSE IVRMSE $RMSE %RMSE
Panel A. In sample
IV estimates 0.0297 1.0782 0.1524 1.0000 1.7795 1.9037
$-estimates 0.0334 0.6059 0.0961 1.1234 1.0000 1.2011
%-estimates 0.0391 0.7925 0.0800 1.3172 1.3079 1.0000

Panel B. 1-day out
IV estimates 0.0310 1.1175 0.1580 1.0000 1.7479 1.8367
$-estimates 0.0339 0.6393 0.1006 1.0953 1.0000 1.1688
%-estimates 0.0395 0.8185 0.0860 1.2767 1.2802 1.0000

Panel C. 5-days out
IV estimates 0.0338 1.2289 0.1746 1.0000 1.6760 1.7004
$-estimates 0.0354 0.7332 0.1145 1.0461 1.0000 1.1155
%-estimates 0.0407 0.8968 0.1027 1.2022 1.2231 1.0000

Panel D. 20-days out
IV estimates 0.0394 1.5107 0.2223 1.0000 1.6217 1.6395
$-estimates 0.0391 0.9316 0.1466 0.9923 1.0000 1.0810
%-estimates 0.0433 1.0632 0.1356 1.0996 1.1413 1.0000

Raw loss Relative loss

29



100 200 300 400 500 600 700

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

A
nn

ua
liz

ed
 V

ol
at

ili
ty

Day Number

Fig. 1. The average implied Black-Scholes volatility across contracts is plotted for each of
the 755 days in the sample. We use daily closing prices of European call options written on
the S&P 500 index. The sample starts on June 1, 1988 and ends on May 31, 1991.
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Fig. 2.A. The root mean-squared errors (RMSEs) using the dollar price ($) loss function
are plotted for the PBS model across days 40 through 755. The left column shows the
$RMSE loss from the estimates using the IVMSE loss function and the right column shows
the dollar loss from the $MSE estimates. The top row shows the in-sample losses, and the
second, third, and fourth rows show the 1-day, 5-days and 20-days out-of-sample $RMSEs,
respectively. The units are dollars.
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Fig. 2.B. The root mean-squared errors (RMSEs) using the relative price (%) loss function
are plotted for the PBS model across days 40 through 755. The left column shows the
%RMSE loss from the estimates using the IVMSE loss function, and the right column shows
the percent loss from the %MSE estimates. The top row shows the in-sample losses, and the
second, third, and fourth rows show the 1-day, 5-days and 20-days out of sample %RMSEs,
respectively. The units are decimals.

32



200 400 600
0

0.05

0.1

0.15

0.2
Heston IVRMSE

In
-S

am
pl

e

200 400 600
0

2

4

6

8
Heston $RMSE

200 400 600
0

0.5

1

1.5
Heston %RMSE

200 400 600
0

0.05

0.1

0.15

0.2

1-
D

ay
 O

ut

200 400 600
0

2

4

6

8

200 400 600
0

0.5

1

1.5

200 400 600
0

0.05

0.1

0.15

0.2

5-
D

ay
s O

ut

200 400 600
0

2

4

6

8

Day Number

200 400 600
0

0.5

1

1.5

Fig. 3. Heston’s stochastic volatility model is estimated daily using three different estimation
loss functions: mean-squared error (MSE) of implied volatility (IV), MSE of dollar prices
($), and MSE of relative prices (%). Each set of estimates is used to evaluate the daily
root mean-squared error (RMSE) loss from the relevant estimation loss function. RMSE
losses are plotted across days using the estimates in sample (top row), as well as 1- and
5-days out of sample (middle and bottom rows). The left column shows the IVRMSEs from
the IV estimates, the middle column shows the $RMSEs from the dollar estimates, and the
right column shows the %RMSEs from the percent estimates. The IVRMSEs and %RMSEs
are reported in decimals and the $RMSEs in dollars. Certain contracts are omitted due to
difficulties in inverting the model prices.
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Fig. 4.A. The first three coefficients in the PBS polynomial are plotted across the 755 days
in the sample for each of the three estimation loss functions, $MSE, %MSE and IVMSE.
The top row shows the constant term, the middle row shows the coefficient on the strike
price, and the bottom row shows the coefficient on the strike price squared. The left column
reports the daily estimates from the IVMSE loss function, the middle column shows the
$MSE estimates, and the right column shows the %MSE estimates.
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Fig. 4.B. The last three coefficients in the PBS polynomial are plotted across the 755 days
in the sample for each of the three estimation loss functions, $MSE, %MSE and IVMSE.
The top row shows the coefficient on the years-to-maturity term, the middle row shows the
coefficient on the years-to-maturity squared term, and the bottom row shows the coefficient
on the cross product of the strike price and the years-to-maturity term. The left column
reports the daily estimates from the implied volatility MSE loss function, the middle column
shows the dollar price MSE estimates, and the right column shows the relative price MSE
estimates.
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