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Modeling the Dynamics of Credit Spreads with
Stochastic Volatility

Kris Jacobs', Xiaofei Li*

Résumé/ Abstract

Dans cet article, nous modélisons I’ écart de crédit sur obligations d’ entreprise avec un modéele affin a
deux facteurs. Le premier facteur Sinterpréte comme le niveau de I’ écart et le deuxiéme comme sa
volatilité. Le taux d'intérét sans risque est modélise selon un modéle affin a deux facteurs standard, ce
qui conduit & un modéle a quatre facteurs pour les rendements d’ obligations d entreprise. Cette
approche nous permet de modéliser la volatilité des écarts de crédit de maniere stochastique et
également de capter des moments des écarts de crédit d'ordres plus éevés. Nous utilisons une
approche de filtre de Kalman étendu pour estimer notre modéle a partir des prix des obligations de 108
entreprises. Le modéle savere performant dans sa reproduction des écarts de crédit empiriques des
obligations d’ entreprise e méne a une racine des erreurs moyennes quadratiques significativement
plus petite que celle dun modele dternatif standard, et ce auss bien dans I'échantillon que lors
d'analyses hors échantillon. De plus, le modele capte également mieux certaines caractéristiques
empiriques importantes des écarts de crédit sur obligations d'entreprise.

Mots clés : risque de crédit; écarts de crédit; modeles a forme réduite; volatilité
stochastique.

The paper investigates a two-factor affine model for the credit spreads on corporate bonds. The first
factor can beinterpreted asthe level of the spread, and the second factor isthe volatility of the spread.
Theriskless interest rate is modeled using a standard two-factor affine model, thus leading to a four-
factor model for corporate yields. This approach allows us to model the volatility of corporate credit
spreads as stochastic, and also allows us to capture higher moments of credit spreads. We use an
extended Kalman filter approach to estimate our model on corporate bond prices for 108 firms. The
model is found to be successful at fitting actual corporate bond credit spreads, resulting in a
significantly lower root mean square error than a standard alternative model in both in-sample and
out-of-sample analyses. In addition, key properties of actual credit spreads are better captured by the
model.
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1 Introduction

Understanding the pricing of default risk or credit risk is of critical importance since
almost every financial security is affected by certain types of credit risk. Over the last decade,
the financial industry has come under increasing pressure to understand and quantify this
risk, because of the growth in financial markets that trade credit sensitive products, and
because of increasing scrutiny from regulators. As a result, the academic literature on
modeling credit risk has been growing fast. Currently, there are two main approaches to
modeling credit risk. The first approach is called the structural approach, first developed in
Merton (1974). The models used in the structural approach are based on the value of the
firm. In these models default is regarded as an endogenous decision usually made by the
firm’s equityholders. The second approach is called the reduced form approach. It considers
default as both a surprise and an exogenous event. This approach uses stochastic processes
similar to those used in the modeling of the riskless term structure to model the default
probability (see e.g. Madan and Unal (1994) and Duffie and Singleton (1999)). The models
used in this approach have proven to be relatively easier to use for practical applications.
This paper presents a reduced form model of credit risk. In particular, we use a two-factor
affine model to describe the joint dynamics of the instantaneous default probability and the
volatility of the default probability.

There are compelling reasons for incorporating stochastic volatility into models of default
probability and credit spreads. According to the contingent claim analysis in Merton (1974),
the corporate bond price is equal to the price difference between a riskless bond and a put
option written on the assets of the firm. Since volatility plays a crucial role in pricing options,
it will also have a major impact on corporate bond prices and yields. It is therefore critically
important to model volatility correctly. At the empirical level, academics and practitioners
have long noted that the volatility of credit spreads changes through time. To illustrate this
feature of credit spread data, consider Figures 1 and 2, which plot different time series of
credit spread indices for different ratings from Moody’s and Standard & Poor’s, respectively
(these data are described in more detail below). Figure 3 also plots the relative changes
for the credit spreads from Moody’s. These figures clearly show that the volatility of credit
spreads is time-varying. Relative changes in credit spreads were significantly larger during
the first halves of the sample periods. In his analysis of credit spreads, Duffee (1999, p.198)
finds “persistent fluctuations in the volatilities of yields (GARCH-like effects) that are not
captured by the model.” Miu (2001) reaches similar conclusion and argues for introducing
volatility as a second factor in the default probability process. Finally, the market for credit
derivatives has been expanding dramatically since 1990s. Since volatility is fundamental to
pricing derivative securities, a stochastic volatility model of credit spreads will help us to
more accurately value credit derivatives such as credit spread options, and to more properly
manage the credit risk of fixed-income portfolios.

A stochastic volatility model can also capture the skewness naturally embedded in credit



data. Because one component of the risky bond price is a put option, the Merton (1974)
model also implies that its distribution is negatively skewed. Therefore we expect to find
positive skewness for the distributions of risky yields and spreads. Tables 1 and 2 present
summary statistics for the Moody’s and Standard & Poor’s credit spread indices. Table 1
provides strong evidence of positive skewness in credit spreads. The evidence in Table 2
is more mixed, with some series displaying (small) negative skewness and others displaying
(relatively larger) positive skewness. The credit spread model in this paper can capture this
skewness.

The objectives of this paper are two-fold. First, we propose a new reduced form model
of credit risk that explicitly accounts for stochastic volatility in default probability and the
correlation between the riskless interest rate and default probability, and we estimate the
model using prices of U.S. Treasury bonds and corporate bonds. Second, we compare the
performance of our model to an alternative model that is developed in Duffee (1999), in
which stochastic volatility in default probability is not explicitly taken into account. We
estimate our model and the alternative model on data of month-end corporate bond prices
from January 1985 to March 1998. In total, the data consist of more than 44,000 bond-
price observations across 108 firms. These bonds are primarily investment-grade. For every
firm, we divide the available data into two sub-periods: the last 12 months are used for
out-of-sample forecasting, and the rest are used for in-sample estimation.

Overall, the stochastic volatility model fits corporate yields much better than the alter-
native model. At the aggregate level, the median in-sample RMSE of our model is 9.30 basis
points (bps), versus 11.99 bps for the alternative model; in the out-of-sample analysis, the
stochastic volatility model achieves an median RMSE of 12.05 bps, relative to 13.89 bps for
the alternative model. More importantly, at the individual firm level, the stochastic volatility
model realizes a lower in-sample RMSE than the competing model for every single firm in
the sample and a lower out-of-sample RMSE for slightly more than two-thirds of firms in the
sample. The parameter estimates indicate that the probability of default is mean-reverting
under the physical measure and can also be mean-reverting under the risk-neutral measure in
the stochastic volatility model, whereas the estimates of the benchmark model indicate that
the probability of default is mean-reverting under the physical measure but mean-averting
under the risk-neutral measure. For the vast majority of the firms, the default probability
and credit spreads are found to be strongly negatively correlated with the default-free inter-
est rate. This finding is consistent with many previous empirical studies. To investigate the
robustness of our findings, we also repeat the estimation using credit spread indices. These
estimation results confirm our findings obtained using individual firm data.

This paper is part of a growing list of articles that empirically test reduced form models of
credit risk.! Madan and Unal (1994) examine yields on certificates of deposit issued by thrift

IRecent empirical studies that estimate structural models of credit risk include Eom, Helwege, and Huang
(2000) and Ericsson and Reneby (2001). In addition, using numerical simulations, Huang and Huang (2000)



institutions. Grinblatt (1995), Duffie and Singleton (1997), Liu, Longstaff, and Mandell
(2000), and Collin-Dufresne and Solnik (2001) study interest rate swap yields. Nielsen
and Ronn (1997) use data on both corporate bonds and interest rate swap yields. Duffee
(1999), Bakshi, Madan, and Zhang (2001), and Miu (2001) analyze corporate bond prices
of individual firms. All of these applications, including ours, are special cases of the affine
family of term structure models. However, our model specification is new in the context of
credit spreads, and it is easy to implement.

The rest of the paper is organized as follows. Section 2 introduces the two models used
in the empirical analysis. Section 3 discusses the data. The estimation method is discussed
in Section 4. Section 5 reports the basic results. Section 6 further explores the empirical
results. Finally, Section 7 concludes the article. All technical details can be found in the
Appendix B.

2 Models of corporate bond prices

This section consists of three parts. Section 2.1 describes the proposed stochastic volatil-
ity model of credit spreads. Section 2.2 briefly summarizes Duffee’s (1999) model, which is
used as a benchmark. In this model, stochastic volatility of credit spreads is not explicitly
accounted for. In Section 2.3, we discuss the stochastic volatility model in more detail, in-
cluding the parameterization of the model, assumptions on the recovery rate, and the pricing
of coupon bonds.

2.1 A model of credit spreads with stochastic volatility

First consider the default-free interest rate. Under the physical (or actual) probability
measure P, the instantaneous nominal riskless interest rate is denoted by ;, and is assumed
to be equal to the sum of a constant, ¢, and two factors that follow independent square-root
diffusion processes

it =c+ fi + for, (1)
dfie = ¢i(pts — fie)dt + 034/ frdwyy, (2)

for i =1, 2. In equation (2), ¢; denotes the speed of mean reversion of factor f;;, and p; can
be interpreted as the long-run mean of f;;, i = 1, 2. The two standard Brownian motions
wye and wey; are assumed to be independent. The specification in equations (1) and (2) has
appeared in Cox, Ingersoll, and Ross (1985) and Pearson and Sun (1994), and the latter calls
it a translated square-root model, due to the presence of the constant term ¢. This model

compare the performances of several well-known structural models of corporate debt.



belongs to the class of exponential affine (or simply affine) term structure of interest rate
models.?

Following Cox, Ingersoll, and Ross (1985), we write the process in (2) under the risk-
neutral probability measure () as

dfse = (Gspts — (b5 + ;) fa)dt + 044/ findilyy, (3)

where 7; (i = 1, 2) are the risk premiums and w;; and Wy are two independent Brownian
motions under the measure (). Notice that in this model, m; < 0 (i = 1, 2) implies that
investors demand positive compensation for bearing interest rate risk.

The choice of the above riskless interest rate model was driven by three considerations.
First, it is well known that the dynamics of riskless yield curves can not be adequately
captured by a single factor. Instead, at least a two-factor model should be used. According to
Litterman and Scheinkman (1991), the first two factors account for nearly 96% of variations
in yield curves. Second, the above specification permits a well-known and simple closed-
form solution for zero-coupon bond prices (see e.g. Pearson and Sun (1994)), which greatly
facilitates estimation. Third, this interest rate model results in a reasonably good fit for the
risk free term structure.

As is common in all reduced form models, default is assumed to occur when an exogenous
Poisson process with intensity A jumps (see Lando (1997)). Under the equivalent martingale
measure (), the intensity of this Poisson process for firm j at time ¢ is denoted by A, which
can be interpreted as follows. Consider a firm j that is not in default at time ¢. Under the
measure (), the probability that this firm defaults during a subsequent sufficiently small time
interval (¢, 1+dt), conditioning on the information available at time ¢, is A;dt. Consequently,
we may interpret \j;; as the instantaneous default probability. Different reduced form models
are mainly characterized by different specifications for Aj.

Next, consider a zero-coupon bond issued by firm j, which promises to pay one dollar at
the maturity date of 1", unless the firm defaults before 7T". If default occurs, the bondholders
recover nothing. We denote by B;(¢,7,0,0) the price of this bond at time ¢, where the
third argument in B,(¢,7,0,0) refers to the coupon rate, and the fourth argument denotes
the recovery rate. We will relax the zero-recovery assumption and examine coupon bonds
in Section 2.3. Under certain regularity conditions (see Duffie and Singleton (1999)), this
corporate bond price is given as

T
Bi(t,,0,0) = B2 {expl— [ (iu + Aju)dul}, (4)
t

where i; 4 A;; is the so-called “adjusted discount rate” for firm j at time ¢, and EtQ() denotes

2Duffie and Kan (1996) characterize affine term structure of interest rate models. Dai and Singleton
(2000) conduct a thorough specification analysis of various affine interest rate models.
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the conditional expectation under the risk-neutral probability measure (), relying on all the
information available at time t.

It is clear from equation (4) that for a near-maturity, zero-coupon, and zero-recovery
corporate bond, the instantaneous default probability, Aj;, can also be interpreted as the
instantaneous credit spread on this bond. Consequently, we will use the terms “instantaneous
default probability” and “credit spreads” interchangeably in this article; they both refer to
Ajt. It should be pointed out that A;, the default probability, may be interpreted in a
broader sense, since the spread between risky and riskless yields also results from factors
other than default risk, such as the liquidity premium or state tax differences.

In this paper, we model default probability as a two-factor affine process under the
physical measure P

)\jt = ¢y + )‘;t + 61j(f1t - E) + 62j(f2t - E)u
dN5, = a(X— \L)dt + Jojda g, (5)
dvje = Y(T — vj)dt + E/Vjed 2941,

where v;; is the instantaneous variance of the default probability of firm j at time #; X and ©
are the unconditional (or long-run) means of A}, and vj;, respectively; o and 7 capture the
mean-reversion of A}, and vy, respectively; and ¢ is the “volatility of volatility” parameter,
which determines the kurtosis of A%,.

The two standard Brownian motions 21;+ and 29;+ are correlated with coefficient p, which
is positively correlated with the skewness of credit spreads. This feature of the model enables
us to capture the skewness exhibited by the distribution of credit spreads. Furthermore, we
assume that zy;, and 29, are independent of the two Brownian motions wy; and wy in
the default-free interest rate process. Finally, fi; and fy, are the means of the smoothed
estimates of the two riskless interest rate factors, fi; and fy:, over the sample period of
corporate bonds.

Again using a standard assumption of prices of risk, the stochastic processes followed by
A%, and vy, under the risk-neutral measure () are given by

dxs, = (X — aXy, + v )dt 4 \fU5dZ (6)
dvje = (70 — (v + Ena)vse)dt + £\ /05d%Z,,

where again the two standard Brownian motions 2y, and Z5;; have a correlation coefficient of
p and they are independent of the Brownian motions wi; and @wsy; in the default-free interest
rate process. Also, n; (i =1, 2) are the risk premium parameters. Note that in this model,
m > 0 and 7e < 0 indicate a positive risk premium in A}, and v;, respectively.

The model for A}, and v in equation (5) is inspired by Fong and Vasicek (1991), who
use similar dynamics to model the default-free interest rate. The model is a member of the
affine family of interest rate models and has a closed-form solution for zero-coupon bond
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prices. Since the solution is quite complicated and involves complex algebra, we use a series
solution method suggested in Selby and Strickland (1995) to compute bond prices in this
paper. The Selby and Strickland method has proven to be both accurate and fast. Appendix
B.1.1 contains a brief introduction to their method.

The specification in (5) and (6) captures, in a tractable way, three prominent empirical
features of actual credit spreads. First, credit spreads (and default probability) appear to
vary stochastically over time. The stochastic A}, term within A; accounts for this feature.
Second, the volatility of credit spreads is itself stochastic. This fact is modeled parsimo-
niously by a stochastic vj. Third, credit spreads on corporate bonds non-trivially depend
on the movements of default-free interest rates. In the model, this dependence is solely cap-
tured by the 61; and 0y, coefficients in Aj;, due to the assumed independence of the Brownian
motions driving the riskless interest rate and the default probability.

2.2 A benchmark model

To evaluate the empirical performance of the stochastic volatility credit spread model, we
also estimate a benchmark model. The benchmark model that we use is the model developed
in Duffee (1999). The default-free interest rate component of his model is identical to the
specification in equations (1), (2), and (3).

Under the P measure, Duffee (1999) models the default probability using a one-factor
translated square-root process with two components linked to the riskless term structure

Ajt = &5+ N5+ 61(fre — Jae) + 625 (S — far), (7)
d)‘;t = Iij(&j — )\;t)dt + Jﬂ/)\;ftdujt,

where the standard Brownian motion u;; is independent of the two Brownian motions wy;
and wy in the riskless interest rate process.
Under the risk-neutral measure, the process for A}, is given by

dN}y = (k05 — (kj + )N )db + 044/ Xy dide, (8)

in which 7; (< 0) is the risk premium, and the Brownian motion @, is independent of the
Brownian motions wy; and wsy; in the riskless interest rate specification.

Notice that in the Duffee model, the volatility of the credit spreads, Uj\/)\TTt, is not
constant but time-varying due to the stochastic nature of \},. However, instead of modeling
the credit spread volatility as a separate diffusion process, in his model the volatility of the
credit spreads is proportional to the level of the spreads itself and can not move independently
of A%,

Together, equations (1) through (3) and (7) through (8) constitute a three-factor affine
model of corporate bond yields, and equations (7) and (8) alone result in a one-factor affine
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model of credit spreads. Henceforth we will refer to this model as the Duffee model or the
benchmark model. This model leads to well-known closed-form solutions for corporate zero-
coupon bond price. In contrast, the four-factor affine model of corporate yields in equations
(1) through (3) and (5) through (6) has an additional factor that captures the stylized fact
that the volatility of credit spreads is stochastic. Henceforth we will refer to this model as the
stochastic volatility model of credit spreads, or for short the stochastic volatility model, even
though the volatility of the riskless component of the risky yield is not formally modeled.?
Notice that the four-factor model does not nest the three-factor benchmark model since in
the special case where the vj; process in equation (5) reduces to a constant, the process for
A}, in equation (5) becomes a so-called Ornstein-Uhlenbeck process, similar to the one used
in Vasicek (1977), which is different from the square-root process for A}, in equation (7).4

2.3 Further discussion of the stochastic volatility model

Denote the “adjusted discount rate” for firm j at time ¢ by Rj;; = is + AjtLjt, where
Lj; is the expected loss rate of firm j’s defaultable bond’s value if default were to occur
at time ¢, and the product term A;. L, is called the mean loss rate (Duffie and Singleton
(1999)). It follows that the recovery rate of firm j at time ¢ is equal to 1 — Lj,. For simplicity,
in our discussion in Section 2.1, we have assumed no recovery upon default, i.e., L;; = 1.
We now relax this no-recovery assumption. When the recovery rate is non-zero, i.e., when
0 < Lj < 1, the price of a zero-coupon corporate bond with a recovery rate of 1 — Ly,

B;(t,T,0,1 — Lj), is given by
B(t,T,0,1 = L) = E{expl— [ (iu+ AjuLu)du]} (9)

= B {expl— [ Rjudul}.

— SN

When using the above pricing relationship, we may either parameterize R, directly,
or parameterize the components of R;, namely, i;, A\j, and Lj;, individually. Duffie and
Singleton (1997) and Dai and Singleton (2000) take the former approach to modeling the

3Tt is worth pointing out that our model and the Duffee model share a common weakness: in both settings,
the default probability, A;;, can become negative, which is conceptually odd. In our model, A\;; may become
negative because the stochastic process followed by Aj; allows AJ, to take negative values. On the other
hand, in the Duffee model, A;; may fall below zero if either ¢; or §;; (i = 1, 2) is negative.

4We also estimated the nested three-factor affine model of corporate yields in which the process for At
is given by an Ornstein-Uhlenbeck process. The performance of this nested model is worse than that of the
benchmark model.



term structure of interest-rate swap yields. The latter approach is adopted by Duffee (1999)
and Collin-Dufresne and Solnik (2001), where they parameterize i; and the product term
Aji L separately. In this paper, we choose to parameterize i; and \;; L, separately in order to
extract information about the mean loss rate Aj;;L;; from historical defaultable bond prices.
This information can be used to value other defaultable claims, such as credit default swaps.

In this paper, we assume that if default were to occur at 74, t < 7; < T, the bondholders
would receive, upon default, a fixed fraction of (1 — L) of the face value of the original
corporate bond. In other words, in the event of default, the corporate bondholders are
assumed to receive a fixed (1 — L) unit of an otherwise identical default-free bond for every
one dollar of the face value of the original default-risky bond. Jarrow, Lando, and Turnbull
(1997) and Duffee (1999) make a similar assumption on the recovery rate.

The assumption of a constant recovery rate (1— L) can be justified by two findings. First, a
recent empirical study in Skinner and Diaz (2001) discovers that for the purpose of accurately
pricing defaultable bonds, a stochastic recovery rate is of only second-order importance,
relative to e.g. a correct parameterization of default probability. Second, as pointed out in
Duffie and Singleton (1999), since Aj; and L, only appear in the pricing relationship (9) as
a cross product term, it is impossible to identify them separately by using data on corporate
bonds alone. Instead, data on credit derivatives, of which payoffs are nonlinearly dependent
on Aj; and Lj;, are required. Since the main focus of this paper is on modeling default
probability Aj;, a constant recovery rate assumption makes identification of Aj; possible. It
also permits a closed-form solution of bond prices, which significantly facilitates estimation.
However, it should be kept in mind that the framework can be extended to accommodate a
stochastic recovery rate without additional conceptual difficulty.

We set the recovery rate at 44% of par in our empirical work. This is consistent with
Moody’s finding that the average recovery rate of senior unsecured bonds is approximately
44% of the par value (of the original bond) if default occurs. A similar assumption is made
in Duffee (1999), who fixes the recovery rate at 44% of par, and also in Duffie and Lando
(2001), who assume a constant recovery rate of 43.3%.

Applying a standard no-arbitrage argument, we can write the before-default price of a
zero-coupon corporate bond with a constant recovery rate of (1 — L) as

B;(t,T,0,1—=L)=(1-L)G(T,0)+ LB;(t,T,0,0), (10)

where G(t,T,0) denotes the price at time ¢ of a default-free zero-coupon bond that matures
at time T'.

The bulk of the corporate bond data consist of coupon bonds. We use the so-called
“portfolio of zeros” approach to valuing corporate coupon bonds. In Appendix B.1.2, we
define this approach and provide theoretical justifications for its use in the present context.
Appendix B.1.2 also contains the formulas for coupon bonds.



3 Data

3.1 Data on the risk free interest rate

Month-end US Treasury prices (the averages of the reported bid and ask prices) from
January 1985 to March 1998 are obtained from the CRSP US Treasury Cross-Sectional File.
In each month, the most recently issued (or on-the-run) noncallable Treasury bills, notes or
bonds with maturities closest to 3 and 6 months and 1, 2, 3, 5, 10 and 30 years are selected.”

3.2 Data on corporate bonds

Month-end corporate bond bid prices are collected from the Fixed Income Securi-
ties Database (also known as the Lehman Brothers Fixed Income Database or the Warga
Database) over the period beginning January 1985 and ending March 1998, encompassing
a sample period of 159 months. Before 1985, firms rarely issued non-callable bonds. Hence
we only use a sample period starting in January 1985. All price observations included in
the sample are indicative trader-quoted prices. That is, prices that were calculated using
a matrix algorithm are dropped. Only investment-grade, non-callable, non-putable, senior
unsecured straight bonds with semi-annual coupons and no sinking fund provisions, hav-
ing remaining maturities no longer than 35 years and no shorter than 1 year, are selected.
Only those firms for which there are at least three bonds (not necessarily the same bonds)
outstanding in a given month for at least 48 months (not necessarily consecutively) are con-
sidered. Finally, we only include bonds in the sample that make up the Lehman Brothers
bond index or are about to enter the index. There are 108 firms that satisfy all of the above
requirements. Among these firms, 65 are industrial firms, 28 are financial firms, and 15 are
utility firms. The final data set consists of a total of 44,298 qualified bond price observations.
Appendix A contains a complete listing of the corporations included in the dataset.

In some instances, we compare estimation results across credit ratings. To do so, we use
the bond rating supplied by Moody’s, which defines a firm’s credit rating as the rating on
its senior unsecured bonds. The credit rating assigned to a firm in the sample is the mean
of the ratings of the firm’s bonds used in estimation. This procedure results in 12 Aa-rated
firms, 60 A-rated firms, and 36 Baa-rated firms. That is, the sample is dominated by A- and
Baa-rated firms.%

5Duffee (1999) uses data on the second most recently issued (or off-the-run) U.S. Treasury securities in
order to avoid capturing any special liquidity premium associated with the on-the-run Treasury securities.
He reports no material difference between on-the-runs and off-the-runs. As a robustness check, we also
estimate our riskless interest rate model using off-the-run data and the results are very similar to those
obtained using on-the-runs. We therefore only report results on on-the-runs. Several other empirical studies,
e.g. Duffie and Singleton (1997) and Miu (2001), also use the on-the-run U.S. Treasury data.

1n our original sample, there were also 3 Aaa-rated firms. We have excluded them from our subsequent
analyses for two reasons. First, the limited sample size makes any inference from the results on these firms

10



Table 3 contains summary statistics for the corporate bond data. Panel A reports that
the median firm has 73 months of valid bond price observations, while none of the firms in
the sample has valid observations in every month. The second row of Panel A in Table 3
reports the mean number of fitted bonds per month, which is calculated over those months
in which a firm has at least three qualified bonds outstanding. The median number of fitted
bonds is 4.4, and the maximum number is 12.36. Therefore, although across all the firms and
the entire sample period this article uses 44,298 bond price observations, the credit spreads
for the median firm are estimated using just 4 bonds per month. For some firms, certain
parameters are therefore estimated imprecisely. The third, fourth, and fifth rows of Panel A
report the remaining years to maturity of the bonds used in estimation. The median firm has
a minimum maturity of 1.06 years, a mean maturity of 7.92 years, and a maximum maturity
of 20.25 years. Finally, according to the last row of Panel A, the median firm has a mean
annual coupon rate of 8.37%. For one firm (Allied Corp.), the data set exclusively contains
zero-coupon bonds.

Panels B and C present means (in bps), standard deviations (in %), skewness and kurtosis
for yields and credit spreads in this sample. The credit spreads in Panel C are calculated as
the differences between the yields (used in Panel B) and the riskless interest rates implied by
the default-free term structure model. The median firm has a mean yield of 709.56 bps and
a mean credit spread of 246.07 bps. Similar to the findings in Table 1 and Table 2, yields
and credit spreads in this sample exhibit significant positive skewness. There is not much
evidence of excess kurtosis in either the yield data or the credit spread data.

To demonstrate the robustness of our results, we repeat the empirical exercise using
credit spread indices. The advantage of this type of data is that they span a much longer
time horizon than the individual firm data. We obtain Moody’s 10-year and 30-year Aaa
and Baa monthly credit spread indices from the Federal Reserve Board’s G.13 release. The
sample periods are January 1960 to April 2003 for 10-year maturity spreads and February
1977 to February 2002 for 30-year maturity spreads. We also obtain weekly credit spread
index data for various maturities from Standard & Poor’s for the sample period August 6,
1996 to September 11, 2001. The time series plots of a subset of these data are in Figure 1
and Figure 2, respectively, and Figure 3 presents the relative changes in the spreads for the
Standard and Poor’s data. Tables 1 and 2 present descriptive statistics for these data. As
mentioned before, the Moody’s data display positive skewness, while the Standard & Poor’s
data in some cases display small negative skewness, and large positive skewness in other
cases.

inconclusive. Second, in our sample, the average actual yield on these 3 Aaa-rated firms is higher than those
on the Aa-, A-, and Baa-rated firms, and the mean actual credit spread for these 3 firms is higher than that
for the Aa-rated firms. This is an anomaly likely caused by the very limited sample size of the Aaa-rated
firms.
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4 Estimation methodology

These two models can be estimated using a number of different methods. We adopt the
extended Kalman filter (EKF) approach to estimate the riskless interest rate and corporate
bond models. This approach has been successfully used in, among others, Claessens and
Pennacchi (1996), Babbs and Nowman (1999), de Jong (2000), Duan and Simonato (1999),
Duffee (1999), Geyer and Pichler (1999), and Miu (2001). There are at least three major
advantages associated with the EKF approach. First, it allows us to use both cross-sectional
and time-series information contained in the riskless bond prices and corporate bond prices.
Second, this approach correctly treats the underlying state variables (or factors) as unob-
servable, which is consistent with the theoretical models. Third, as a by-product of the EKF,
estimates of the state variables are also generated, which is useful for our analysis in Section
6.7 Appendix B.2.1 contains a brief summary of the EKF approach.

Because of the assumed independence between the Brownian motions driving the riskless
interest rate and those underpinning the default probability, we can follow the two-step
estimation procedure proposed in Duffee (1999). In the first step, we estimate the default-
free term structure using U.S. Treasury prices alone. In the second step, we assume that
the parameter estimates of the riskless interest rate obtained from stage one are the true
parameters and use them to estimate the parameters of the default probability of each
individual firm in the sample. That is, we run an EKF to estimate the riskless interest rate
in the first step, and in step two we run an EKF for each individual firm to estimate its
credit spread process.

4.1 Estimation of the default-free interest rate

At time ¢, we observe a cross-section of U.S. Treasury bond prices G; = (G4, ..., Gg,t)/.
We collect the two unobservable state variables in the vector F;. For notational simplicity,
we suppress the dependence of the model on the parameters to be estimated and write down
the measurement equation and the transition equation of the Kalman filter as

Gy=m(F) + e, Eia(ee) = A, (11)
Fe=a+bF 1+, Etfl(gtgé) = V(Fi1). (12)

In the measurement equation (11), the function m(F;) maps the two state variables in F} to
bond prices, and we know this mapping in closed-form; ¢; is the white noise measurement

"For nonlinear and non-Gaussian models, such as the two models considered here, the parameter estimates
obtained from the EKF may be inconsistent. However, Monte Carlo evidence in Lund (1997), Duan and
Simonato (1999), and de Jong (2000) suggests that this inconsistency is of fairly limited importance for the
typical sample size encountered in term structure modeling. Duffee and Stanton (2001) advocate the use of
the EKF instead of a more sophisticated method in a similar context.
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error at time ¢ and has a constant conditional variance-covariance matrix given by A. In the
transition equation (12), ¢ is also a white noise error term, of which the conditional variance-
covariance matrix is V' (F;_1). This matrix depends on the values of the state variables at
time ¢ — 1. The explicit forms of components a, b, and V(F;_1) are presented in Appendix
B.2.2.

We assume that the default-free interest rate process is stationary. Therefore, we can use
the unconditional moments of factors fi and fs, uy and po, respectively, to initiate iterations
on the riskless interest rate. We write the measurement equation in terms of bond prices
instead of yields for two reasons. First, for coupon bonds there is no linear mapping between
the state variables of the model and the bond yields. As a result, we have to numerically
solve for the yields. We conjecture that the error occurred in this yield extraction process
may be carried over to the subsequent estimation process. We emphasize that this is only
a conjecture since we are unaware of any empirical study that addresses this issue. Second,
writing the measurement equation in terms of prices allows us to analytically calculate the
derivatives of the function m(-) with respect to parameters of the model, which facilitates
estimation.

Finally, the nonlinear mapping m(-) between the coupon bond prices and the state vari-
ables makes identification of all the risk premium parameters of the model possible. This
point is made in Dai and Singleton (2000).

4.2 Estimation of the default probability

When estimating the default probability of an individual firm in the second step, we
consider the parameter estimates obtained from phase one as the true parameters of the
model. We also use the smoothed estimates (i.e., estimates based on information through
the entire sample) of the two unobserved riskless factors from phase one. These smoothed
estimates are produced by the Kalman filter and we denote them by J/Cl\t (i =1, 2). We take
the means of these estimates over those months in which a firm has valid corporate bond
price observations. These means are denoted by fi (i =1, 2) and they appear in equations
(5) and (7).

Consider a given firm j. In month ¢, we observe a cross-section of Uj; corporate bond
prices issued by this firm. We stack these bond prices into a vector Bj; = (Bj 14, ..., Bju;,.)'-
The last time that firm j’s bond prices were observed was in month t—7, where due to missing
observations, 7 is not necessarily equal to one. The measurement and transition equations
are (we again ignore the dependence of the model on the parameters to be estimated)

Bje =my(Sje, FY) + €5, Err(e€) = A, (13)
Yije = a5 + 05507 + G, B (Gesiy) = T(Sj0-7)- (14)
In the measurement equation (13), vector F; = (f;t, f;t)’ The function m;(-) maps the
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default-risky state variables stored in ¥;; and the smoothed estimates of the riskless factors
in F} into corporate bond prices Bj;. (For the stochastic volatility model, ¥, = (A, v¢)';
for the benchmark model, ¥; = X},.) The terms €, G, and I'(¥;; -) can be interpreted
analogously to their counterparts in equations (11) and (12). The A;; matrix is a Uj x Uy
diagonal matrix with diagonal entry S;, the common measurement error variance of the bond
prices of firm j. We assume a common error variance since for a given firm, the number of
bonds and the maturities of the bonds are time-varying.

The functional forms of a;, b;, and I'(X;+ ) in the transition equation (14) are given
in Appendix B.2.2. In addition, in Appendix B.3 we give, in closed-form, the first two
conditional moments of the two state variables of the stochastic volatility model of credit
spreads. These moments are used in the empirical work and to the best of our knowledge,
they have not been presented anywhere before.

Finally, unlike the assumption of stationarity made for the risk-free interest rate, we do
not assume that the default probability of an individual firm is stationary because several
recent empirical studies on corporate credit spreads, e.g. Pedrosa and Roll (1998), have
found strong evidence of unit root (non-stationarity) in credit spread series. As a result, we
can not use the unconditional means of the risky state variables in £;; as starting points for
estimating the default probability. Instead, we filter an estimate of the initial values of ¥
and the variance-covariance matrix associated with this estimate out of firm j’s first month
bond data. We refer the interested reader to Duffee (1999, p. 208) for further details.

5 Empirical results

This section is divided into four parts. Section 5.1 summarizes the estimation results
on the default-free interest rate. Section 5.2 discusses the in-sample estimation results for
the credit spread models. Section 5.3 reports the out-of-sample results. Section 5.4 presents
the estimation results on credit spread indices.

5.1 Results on the riskless interest rate

Table 4 reports the estimation results on the default-free interest rate model. The
robust standard errors for the parameter estimates are calculated using the formulas in
White (1982). The standard errors are generally very small, indicating that the riskless
model parameters are estimated quite precisely. The parameter estimates imply that the
first factor exhibits strong mean-reversion with a half-life of around 1.25 years. In contrast,
the second factor exhibits little mean-reversion, with a half-life of more than 34 years. The
estimates of the risk premia are both negative, which is consistent with the theoretical
model, although the estimate of the second risk premium, 79, and the associated standard
error indicate that 7y is of little economic significance and is not statistically different from
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The first factor of the riskless model may be interpreted as the negative of the slope of the
riskless term structure. The correlation between the smoothed estimates of this factor and
the slope of the Treasury yield curve (defined as the difference between the 30-year Treasury
bond yield and the 3-month Treasury bill yield) is -0.95, and the correlation between the first
differences of these two series is -0.82. On the other hand, the second riskless factor moves
closely with long-term Treasury bond yields since the correlation between the smoothed
estimates of this factor and the yields on 30-year Treasury bonds is 0.98, and the first
differences of these two series are strongly correlated with correlation coefficient 0.93. It is
common practice in modeling the riskless term structure to interpret one risk-free factor as
the slope of the yield curve, while another factor as the level of the yield curve.

The parameter estimates for the riskless term structure are generally consistent with
those of, among others, Duan and Simonato (1999), Duffee (1999), and Geyer and Pichler
(1999), although the sample periods in these studies are different. Our results are also
similar to those in Pearson and Sun (1994), although both their estimation methodology
and sample period differ. The fit of this two-factor model to the Treasury yield curves is
overall comparable to the results in Duffee (1999). We achieve a much better fit for the
short maturities but a slightly inferior fit for long-maturity bonds. Unlike Duffee (1999),
who arbitrarily fixes the constant term ¢ at -1, we estimate this constant along with other
parameters of the model. An estimate of -0.48 for ¢, coupled with the estimates of p; and
[t2, implies a long-run mean of the riskless short rate of around 9%, which is reasonable.
Moreover, Duffee (1999) argues that in order for this riskless interest rate model to fit both
a low, flat term structure and a high, steep term structure, while at the same time without
incurring unrealistically high volatility, we need a negative estimate of the constant term.
Our results support his claim.

5.2 In-sample results on credit spread models

Table 5 summarizes the in-sample RMSE fit of the stochastic volatility model, and Table
6 presents the corresponding RMSE for the benchmark model. Tables 5 and 6 also report
the median and interquartile ranges for the parameter estimates. In Appendix A, we break
down, firm by firm, the RMSE results for the two models. Notice that here the RMSE is
calculated based on the contemporaneous predictions of the state variables in X; (i.e., the
estimates of ¥;; using information available through time ¢). This is in contrast to Table 4,
where the RMSE is computed using the smoothed estimates (based on information through
the entire sample) of the state variables. Duffee (1999) computes the RMSEs similarly.
Since for any given firm, its term structure of credit spreads is estimated using a relatively
small number of bonds, the resulting parameter estimates are sometimes not very precise.
Also, there are substantial interquartile variations in the parameter estimates, as reported in
Table 5 and Table 6. Consequently, we will concentrate on the median parameter estimates

15



and the median RMSEs in the remainder of this section.

Table 5 indicates that in the stochastic volatility model, both the instantaneous default
probability (and credit spread) and its volatility are mean-reverting under the physical mea-
sure, because both estimates of o and v are positive (see equation (5)). A related study
by Prigent, Renault, and Scaillet (2001) also find strong mean-reversion in Moody’s credit
spread series. Under the risk-neutral measure, we can rewrite equation (6) in a slightly
different form as

* 5% * Thv; ~
ANy, = a(X— N+ a”)dt+,/—vjtdzlj,t, (15)
U

dvj = (v + &) — Vst )dt + &3/051dZ; 1.

v+ &Ny
Notice that the variance of credit spreads, v;;, now appears in the drift term of A},. Therefore,
« is not the mean-reversion parameter for A%, under the () measure. The parameter estimates
in Table 5 suggest that the term "% is often positive. It then follows from equation (15)
that when A%, is below its unconditional mean A so that (A — %) is positive (and A}, will
increase towards its mean level of X), the variance of credit spreads v;; may increase the
mean-reversion of credit spreads by making the drift of A}, bigger. The opposite effect
holds when M, is above its unconditional mean A so that (A — A%,) is negative (and A}, will
decrease towards X) We conclude that in the stochastic volatility model, the default risk
A%, can exhibit mean-reversion under the risk-neutral measure for reasonable combinations
of parameter values. From Table 6 we see that although the default probability exhibits
mean-reversion under the physical measure in the Duffee model, it displays mean-aversion
(k;j +7; < 0, see equation (8)) under the ) measure. This finding is consistent with that in
Duffee (1999). Finally, the mean-reversion parameter for v;; is v+ £n2. The results in Table
5 then show that the volatility of default probability is mean-averting (i.e. non-stationary)
for about 50% of the firms.

In both models, parameters ¢;; and 09; capture the correlation between credit spreads
and the default-free interest rate. Table 5 and Table 6 indicate that the estimates of 6;; and
8y; are primarily negative and are larger (in absolute terms) than the estimates in Duffee
(1999). To appreciate the economic significance of the estimates of 61; and 625, suppose that
the first riskless factor fi; drops by 100 bps. This increases Aj; by 0.00475 in the stochastic
volatility model and by 0.00242 in the benchmark model, according to the median estimates
of 6;; in Table 5 and Table 6, respectively. Given a recovery rate of 44%, this increase in
Aj¢ translates into an increase of 26.6 bps and 13.6 bps in the credit spreads on a near-
maturity zero-coupon corporate bond in the stochastic volatility model and in the Duffee
model, respectively. Similarly, the median estimates of 69; reported in Table 5 and Table 6
imply that a 100 bps decline in the second riskless factor fy corresponds to an increase of
7.5 bps and 3.7 bps in the credit spreads on a near-maturity zero-coupon corporate bond in
the stochastic volatility model and in the Duffee model, respectively. A negative relationship
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between the riskless interest rate and credit spreads is consistent with the structural model
in e.g. Longstaff and Schwartz (1995): an increase in the risk-free interest rate increases the
drift of the process for firm asset value under the measure (). Other things being equal, this
increase in firm value will pull the firm further away from the default threshold, increasing
the bond prices of the firm, thus lowering the bond credit spreads. This finding of a negative
relationship also confirms the results of many previous empirical studies, such as Duffee
(1998) and Collin-Dufresne, Goldstein, and Martin (2001). On the other hand, Neal, Rolph,
and Morris (2000) and David (2002) suggest that the relationship between credit spreads
and the riskless interest rate is not constant, but depends on factors such as maturity and
the state of the business cycle.

In Table 5, the estimates of the first risk premium parameter, 7y, are positive, while the
estimates of the second risk premium parameter, 79, are negative. In Table 6 the estimates
of the risk premium parameter, 7;, are negative. These results are consistent with the
theoretical models developed in Section 2 and imply that investors demand compensation
for bearing not only the time-varying default risk but also the risk associated with the
stochastic volatility of credit spreads. Finally, note that in Table 5 the estimates of 7; and
19 are large numbers (in absolute value). This is due to the fact that in equation (15) 7y and
12 appear in the product terms of n1v;; and £nsy, respectively, and the estimates of v;; and ¢
are relatively small.

Table 5 and Table 6 also report the interquartile ranges of the mean fitted values of the
state variables of the two models. These fitted values are based on the contemporaneous
predictions of the state variables of the models, consistent with the way in which the in-
sample RMSE is computed. Table 5 shows that in the stochastic volatility model, the
median firm has a mean instantaneous default probability A;; of 1.8% per annum, while the
corresponding value for the benchmark model in Table 6 is 1.4% per annum. Both estimates
are fairly close to the estimate in Duffee (1999), which is 1.36% per annum, but of course
the default probability in the data is much lower. Also, it is worth noticing that although
a negative estimate of ¢; in the stochastic volatility model might raise the prospect of a
negative default probability A;; (see equation (5)), which is theoretically inconsistent, the
mean estimates of \;; are always positive, as reported in Table 5. Table 5 also shows that the
median value of the mean instantaneous variance of credit spreads, v, is 0.0000581, which
translates into an instantaneous volatility of credit spreads of 0.0076. For the benchmark
model, Table 6 reports that the median firm has a mean instantaneous volatility of credit
spreads, 0; \/)\7;}, of 0.002, which is lower than the estimate in the stochastic volatility model.

The stochastic volatility model fits the corporate bond prices better than the benchmark
model. Table 5 and Table 6 show that the median in-sample RMSE of the stochastic volatility
model is 9.30 bps, versus 11.99 bps for the benchmark model. In addition, according to
Appendix A, the stochastic volatility model generates a lower in-sample RMSE than the
benchmark model for every single firm in the sample. As another indication of the better fit
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achieved by the stochastic volatility model, the median estimate of the measurement error
volatility, \/§] (see equation (13)), in the stochastic volatility model is 0.369 dollars, while
it is 0.611 dollars for the benchmark model (all corporate bonds in the sample have a face
value of 100 dollars). The better in-sample fit of the stochastic volatility model should come
as no great surprise because it has one more factor than the benchmark model. However, it
must be noted that the stochastic volatility model does not nest the benchmark model (see
Section 2.2). Therefore, the better in-sample fit achieved by the stochastic volatility model
is encouraging.

5.3 Out-of-sample results on credit spread models

To evaluate a model’s performance, a model’s out-of-sample pricing performance is more
important. A more richly parameterized model is expected to perform better in-sample than
a more sparsely parameterized alternative model, but this may not be the case out-of-sample.
The reason is that models with extra parameters may be penalized in an out-of-sample
analysis because of the difficulty in identifying those extra parameters, given the limited
sample size of available data.

In this paper, we use as the out-of-sample period the last 12 months in which a firm has
valid bond price observations. We conduct the out-of-sample test as follows. We use the
in-sample parameter estimates from Table 5 and Table 6, together with the smoothed esti-
mates of the riskless factors in the out-of-sample period and the risk-free model parameters
(estimated over the entire sample), to generate a sequence of estimates of the default risky
state variables in each of the 12 months in the out-of-sample period. We then use these
estimates, as well as the in-sample parameter estimates and information on the riskless term
structure, to price corporate bonds in the out-of-sample period. Finally, we compute the
corresponding RMSE to gauge the out-of-sample performance of the two models.

The out-of-sample results on the stochastic volatility model are presented in the last
row in Table 5. The bottom row of Table 6 reports the results on the benchmark model.
Again, Appendix A presents the out-of-sample performance of the models on a firm by firm
basis. It is clear from Table 5 and Table 6 that the stochastic volatility model compares
favorably with the benchmark model in out-of-sample forecasting: the median RMSE in the
stochastic volatility model is 12.05 bps, down from 13.89 bps for the Duffee model. Appendix
A also shows that in slightly more than two-thirds of the cases (for 75 firms out of the total
108 firms), the stochastic volatility model leads to a lower out-of-sample RMSE than the
benchmark model.

5.4 Results on credit spread indices

To ensure that the estimation results are robust, we also estimate the stochastic volatility
model and the benchmark model on credit spread index data from Standard and Poor’s. The
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estimation results are reported in Table 7A and Table 7B for the stochastic volatility model
and the benchmark model, respectively. The stochastic volatility model achieves a lower
RMSE than the benchmark model for every credit rating group. As to parameter estimates,
they are generally consistent with those reported in Table 5 and Table 6. It is interesting to
note that the estimates of the constant term c; are negative for the majority of credit spread
indices in the Duffee model, in contrast to the estimates presented in Table 6, where they
are universally positive.

6 Exploration of the Empirical Results

In this section, we further explore the empirical results. This section is further divided
into three subsections. In Section 6.1, we discuss the estimation results for the two credit
spread models by credit rating. In Section 6.2, we examine the fit of the two models by
credit rating and bond maturity. In Section 6.3, we analyze the role played by the constant
term c; in the two models.

6.1 Estimation results for credit spread models by credit rating

Table 8 reports the median parameter estimates and the median mean fitted values of
the state variables for the stochastic volatility model of credit spreads for firms rated Aa, A,
and Baa in the sample. In Table 9 we conduct a similar analysis for the benchmark model.
The first thing to notice from Table 8 and Table 9 is that there is substantial variation in the
estimates across rating classes. While this could be a genuine feature of the data, it is also
possible that this finding is due to the lack of precision in the estimates, which is caused by
the relatively small number of bond price observations available to estimate an individual
firm’s term structure of credit spreads.

Table 8 indicates a modest positive relationship between credit spreads and their volatility
since the median estimate of p for the A-rated group is 0.009, while the corresponding
estimate for the Baa-rated group is 0.018. For the relatively small sample of Aa bonds,
the estimate of p is much larger. Table 1 and Table 2 also report a positive relationship
between credit spreads and their volatility. There we observe that as credit ratings drop,
credit spread levels go up and at the same time the standard deviations of credit spreads
generally increase, thus resulting in a positive relationship between credit spreads and their
volatility. A positive median estimate of p for all the three rating groups also confirms the
evidence of positive skewness of credit spreads reported in Table 1 and Table 2, since in
the stochastic volatility model p captures the skewness of credit spreads. The “volatility
of volatility” parameter £ also appears to increase as credit rating declines: the median
estimates of £ for the A and Baa rated groups are higher than that for the Aa-rated group.

In both Table 8 and Table 9, the estimates of §;; and y; generally are more negative
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for lower credit ratings, even if the pattern is clearer in Table 8. For example, in Table
8 the median estimate of ¢;; for the Aa-rated group is -0.365, which declines to -0.459 for
the A-rated group, then further decreases to -0.558 for the Baa-rated group. Table 8 also
reports that the median estimates of dy; are -0.097 for the Aa-rated firms and -0.141 for
the A-rated firms. This relationship can be explained intuitively using the Merton (1974)
model: other things being equal, a lower-rated firm is closer to the default boundary. The
firm value process of such a firm is more sensitive to changes in the riskless interest rate
since an increase in the default-free interest rate translates into an increased drift of the firm
value process under the risk-neutral measure, which pulls the firm away from the default
boundary, increases the firm’s bond prices, and decreases its credit spreads (see also Section
5.2).

Table 8 and Table 9 also show that the risk premium parameter estimates for both models
generally increase in (absolute) magnitude as firms’ credit rating worsens. This pattern is
consistent with intuition: it implies that investors require higher compensation for bearing
the default risk and the volatility risk of credit spreads as firms’ credit rating declines.

Table 8 reports the median mean fitted values of A;, Aj,, and vj;, and Table 9 reports

the median mean fitted values of Aj;, A}, and 0;,/A% (which measures the volatility of credit

spreads in the benchmark model) for the three rating groups. These fitted values are based
on the contemporaneous predictions of the state variables in the models, which is consistent
with Table 5 and Table 6.

The median estimates of v;; and Uj\/)\?t reveal that the credit spreads of lower-rated
firms are generally more volatile than the credit spreads of higher-rated firms. In Table
8, the median value of v;;, the credit spread variance, is 0.0000294 for the Aa-rated firms,
and increases to 0.0000715 for the A-rated firms. Although for the Baa-rated firms the
median estimate of vj; is lower than that for the A-rated firms, in the results not reported,
the 25% and 75% inter-quartile values of v; for the Baa-rated firms are higher than the
corresponding values for the A-rated firms. These results also echo the evidence presented
in Table 1 and Table 2, where we observe that the standard deviations of lower-rated credit
spreads are in general higher than those of their higher-rated counterparts. The higher
volatility associated with the credit spreads on lower-rated bonds implies that managers of
bond portfolios consisting of mainly lower-rated bonds should pay more attention to hedging
their exposure to the volatility risk.

According to the median estimates of Aj; reported in Table 8 and Table 9, the lower-rated
firms have a higher default probability. For example, in Table 8 the median estimate of Aj,
the default probability, is 1.2% for the Aa-rated firms, which rises to 2.8% for the Baa-rated
firms. These findings support the claim that the commonly used credit ratings are a good
first indicator of a firm’s creditworthiness.
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6.2 RMSEs of credit spread models by credit rating and maturity

The last two rows in Table 8 and Table 9 tabulate the median in- and out-of-sample
RMSEs for the stochastic volatility model and the benchmark model, respectively. These
two tables reveal that the stochastic volatility model has a better fit than the benchmark
model in both in- and out-of-sample analyses, resulting in a lower RMSE in both cases for
all three rating groups. Also, it is interesting to note that the fit of both models worsens
as credit ratings fall; the in- and out-of-sample RMSEs for both models become bigger as
credit ratings get worse.

We now examine the fit of the two models from the perspective of individual bonds. In
Panel A of Table 10A, we first divide all the qualified bond price observations in the in-sample
periods into different maturity groups. We then report and compare the in-sample RMSEs
for the stochastic volatility and benchmark models for these maturity groups. Again, the
stochastic volatility model produces a lower in-sample RMSE than the benchmark model for
bonds in every maturity group. Similarly, Panel A of Table 10B reports and compares the
out-of-sample RMSEs for both models for bonds in various maturity groups. The stochastic
volatility model achieves a lower out-of-sample RMSE than the benchmark model for every
maturity group except for bonds with maturities ranging from 20 years to 25 years. In Panel
B of Table 10A, we first divide all the valid bond price observations in the in-sample periods
into different credit rating classes. We then calculate and report the in-sample RMSEs for
both models for bonds within each credit rating class. In Panel B of Table 10B, we conduct
a similar analysis on bonds in the out-of-sample periods. We observe from both these two
panels that the stochastic volatility model performs better than the benchmark model in
not only the in-sample but also the out-of-sample tests. Again, the fit of both models gets
worse as bond ratings decline, since both the in-sample and out-of-sample RMSEs of the two
models rise as bonds become less creditworthy.

6.3 Role of the constant term c¢;

In Figure 4 and Figure 5, we plot the average credit spreads of the Aa-, A-, and Baa-
rated firms for the stochastic volatility model and the benchmark model, respectively. These
figures are generated as follows. For every firm in each rating group, we take its parameter
estimates and its mean fitted values of A}, and v;,. The parameter estimates for the riskless
term structure model are taken from Table 4, and for simplicity, we have set the two riskless
factors, fi¢ and fo, to their sample means over the in-sample period used for estimation of
the firm’s credit spread term structure. Using all these information, we calculate the credit
spreads corresponding to the firm’s parameter estimates. We then average across the credit
spreads corresponding to all the firms in each rating group and plot the resulting credit
spread curves.

In both Figure 4 and Figure 5, the credit spread curves of the lower-rated firms lie above
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those of the higher-rated firms. In addition, both figures show that the credit spread curves
of the lower-rated firms are steeper than those of the higher-rated firms. The pattern of
the credit spread term structures exhibited in Figure 4 and Figure 5 is consistent with the
stylized facts about the investment-grade credit spreads (see e.g. Litterman and Iben (1991)
and Fons (1994)).

The median estimate of the constant term c; in the stochastic volatility model is negative,
while it is positive in the benchmark model. Duffee (1999) argues that the combination of
c; > 0 and k; + m; < 0 is required for his model to fit both the level and slope of the credit
spread curves in Figure 5. His reasoning can be briefly summarized as follows. Because
kj+7; < 0 under measure (), investors price the corporate bonds as if the embedded default
risk is explosive. That is, they expect A}, to rise through time. For a fixed value of x; + 7;,
a rising A}, implies a larger drift term in equation (8) and a upward-sloping credit spread
curve. However, the slope of the resulting credit spread term structure for higher-rated firms
may be too steep to match the slope of the credit spread curve. Therefore, a positive ¢; is
required in order to depress the overall steepness of the yield spread curves. Without the
c; parameter, for highly rated firms, the yield spread curves generated by the Duffee model
would be too steep to be consistent with those found in the data.

Similarly, the pair of ¢; < 0 and o > 0 is necessary for the stochastic volatility model to
fit both the level and slope of the credit spread curves in Figure 4. A positive estimate of «
implies that the default risk is mean-reverting (i.e. stationary) under the physical measure
and can be mean-reverting as well under the risk-neutral measure (see Section 5.2). That
is, investors do not expect A7, to rise through time. Instead they expect A, to likely return
to its long-run mean level after a sufficient length of time. (The mean-reversion of A}, in
the stochastic volatility model is moderate since e.g. the median estimate of « for the A-
rated firms is 0.063, which implies a half-life of about 11 years.) As a result, the stochastic
volatility model will not imply an overly steep credit spread curve for highly rated firms.
Consequently, the role played by the constant term c; in the stochastic volatility model is
mainly to dilute the effect of A}, through the sum of ¢; and A}, in equation (5), since the
estimates of A%, are comparatively large for the stochastic volatility model, in order to fit the
levels of credit spreads.

7 Conclusion

This paper presents a two-factor affine model of default probability and credit spreads.
The first factor can be interpreted as the level of credit spreads, and the second factor is the
volatility of credit spreads. This default risk model also allows for a close relationship between
credit spreads and the riskless interest rate, a characteristic supported by the empirical
findings.

Using a large sample of corporate bond price data, we compare the stochastic volatility
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model to a benchmark model in which the volatility of credit spreads is not recognized as a
distinct state variable. The stochastic volatility model performs better than the benchmark
model, resulting in a lower RMSE (in bps) in both in-sample and out-of-sample tests. The
properties of actual credit spreads are better captured by the stochastic volatility model.
Therefore, the empirical results demonstrate the importance of including the volatility of
credit spreads as a second factor in default risk models.

These results question the ability of a single-factor diffusion process to model adequately
both the dynamics of credit spreads and the dynamics of credit spread volatility. We propose
a multi-factor reduced form model instead. The model is tractable as well as flexible, and
the empirical results show that it fits corporate yield curves reasonably well.

In future work, it will be interesting to use the model to value various types of credit
derivatives. The use of credit derivatives has been growing at a tremendous pace, reflecting
an increase in both transaction volumes and market participants (J.P. Morgan (1999)).
All major types of credit derivatives (such as credit default swaps, total return swaps and
credit spread options) are significantly affected by changes in credit spreads and default
probabilities (Das (1999)). Since the stochastic volatility model approximates the dynamics
of credit spreads and default probabilities more realistically and more satisfactorily, it may
lead to more accurate pricing of credit derivatives.
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Appendix A: Empirical results (in basis points) firm by firm

Firm number

©COO~NOOOhA_WNPRE

Firm name

ALLIED - SIGNAL INC

ALLIED CORP

AMERICAN BRANDS
AMERICAN EXPRESS CREDIT
AMERICAN GENERAL FIN CORP
AMR CORPORATION

AON CORP
ARCHER-DANIELS-MIDLAND
ARCO CHEMICAL CO

ARISTAR INC

ATLANTIC RICHFIELD

AVCO FINANCIAL SERVICES
BAXTER INTERNATIONAL INC
BEAR STEARNS CO, INC

BELL TEL OF PENN
BENEFICIAL CORP

BOEING CO

BOSTON EDISON

BOWATER

BP AMERICA INC

BURLINGTON RESOURCES INC
CATERPILLAR INC

CHRYSLER FINANCIAL

CIGNA CORPORATION

CIT GROUP HOLDINGS
CITICORP

COASTAL CORPORATION
COCA - COLA ENTERPRISES INC.
COCA-COLA CO

COMMERCIAL CREDIT
CONSOLIDATED ED OF NY
CONSOLIDATED NATURAL GAS
CSX CORP

DAYTON HUDSON CORP
DELTA AIRLINES, INC.

DILLARD DEPARTMENT STORES
DOLE FOOD CO

DOW CHEMICAL

DOW CHEMICAL B.V.

EATON CORP

ENRON CORP

FEDERAL EXPRESS CORP
FIRST INTERSTATE BANCORP
FORD CAPITAL B.V.

FORD MOTOR

GENERAL MOTORS

GENERAL MOTORS ACPT CORP
GEORGIA PACIFIC

GREAT WESTERN FIN CORP
GTE CORP

HELLER FINANCIAL, INC
HERTZ CORP

HOUSEHOLD FINANCE
INTERNATIONAL LEASE FINANCE
INTERNATIONAL PAPER

INTL BUSINESS MACHINES
JAMES RIVER CORP

LEHMAN BROTHERS HOLDINGS INC

LIMITED, INC
LORAL CORPORATION

LOUISIANA LAND & EXPLORATION

MARRIOTT CORPORATION

In-sample
Duffee's
model

8.308
12.180
13.401
12.924
17.617
21.442
4.709
11.484
14.575
9.725
15.834
9.787
11.678
5.591
4.374
13.408
8.286
9.506
16.152
5.483
13.525
22.091
15.707
8.837
12.332
9.046
12.007
16.922
5.131
12.582
7.139
10.325
10.857
19.319
17.991
13.566
10.610
15.694
8.557
12.535
11.983
14.949
13.512
10.603
15.330
14.286
12.365
22.804
4.376
10.818
9.833
11.891
17.371
17.403
17.729
14.617
6.655
5.784
8.002
16.406
12.912
21.433

Stoch.
Volati.
model

6.608
8.876
12.163
7.675
15.544
20.251
3.419
10.997
12.740
7.508
14.169
7.761
8.668
5.009
2.214
10.804
8.012
9.252
15.469
3.100
12.283
15.186
14.905
6.699
10.610
6.874
10.213
15.078
3.472
8.225
4.775
8.015
10.573
17.371
17.383
13.167
3.716
14.549
7.432
11.147
10.556
7.032
10.584
8.339
13.085
10.304
9.081
17.164
2.701
8.257
7.584
10.619
16.294
16.158
12.896
14.131
3.475
5.678
4.624
15.514
10.940
20.355
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Out-of-
sample
Duffee's
model

12.194
13.053
16.451
8.744

8.590

18.440
8.767

12.237
11.742
18.517
18.007
12.190
7.919

12.831
6.315

31.981
11.949
11.617
17.457
8.796

15.075
12.403
26.102
19.790
6.137

26.388
16.492
15.533
5.972

12.645
8.271

11.310
14.396
15.335
17.105
14.395
11.779
16.077
10.971
14.780
15.057
24.252
7.670

10.566
12.806
17.723
7.936

18.000
12.371
16.667
11.518
13.939
9.717

13.989
13.036
13.089
17.910
16.706
13.133
17.253
11.294
45.492

Stoch.
Volati.
model

12.562
11.412
13.047
7.602
9.320
21.722
8.122
12.450
13.081
14.254
17.407
11.161
7.158
8.884
6.600
17.600
11.957
11.063
15.474
8.617
15.067
15.581
5.275
12.935
6.620
27.842
9.154
16.210
6.600
7.604
6.765
7.671
13.994
14.698
15.273
21.448
9.319
17.043
8.971
14.192
11.610
8.513
9.032
8.291
14.413
15.528
10.114
15.724
5.169
14.151
10.079
11.088
8.245
8.797
14.940
14.310
17.124
12.493
8.236
17.754
12.841
39.707



63
64
65
66
67
68
69
70
71
72
73
74
75

7
78
79
80
81

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

25%
Median
75%

MARTIN MARIETTA

MASCO CORP

MAY DEPARTMENT STORES
MAYTAG CORPORATION
MERRILL LYNCH & CO.
MOBIL CORP

MORGAN STANLEY GROUP INC
NEW ENGLAND TEL + TEL
NEW YORK TELEPHONE
NORWEST FINANCIAL INC.
OCCIDENTAL PETROLEUM
PACIFIC BELL

PAINE WEBBER INC
PEPSICO INC

PHILIP MORRIS COS. INC
PROCTER + GAMBLE CO
RALSTON PURINA CO
ROCKWELL INTERNATIONAL
SALOMON INC

SCOTT PAPER

SEAGRAM JOSEPH E + SONS
SEARS ROEBUCK + CO
SECURITY PACIFIC CORP
SHOPKO STORES, INC
SOUTHERN CALIF EDISON
SOUTHWEST AIRLINES CO.
SUNAMERICA INC
TELE-COMMUNICATIONS
TENNECO CREDIT CORP
TENNECO INC

TENNESSEE GAS PIPELINE CO
TEXACO CAPITAL INC.
TEXAS EASTERN TRANSMISSN
TEXAS INSTRUMENTS

TIME WARNER ENT
TRANSAMERICA FINANCIAL
UNION OIL OF CALIFORNIA
UNITED AIR LINES INC

USX CORP

WAL-MART STORES, INC
WEYERHAEUSER CO
WHIRLPOOL CORP
WILLAMETTE IND

WILLIAMS COS

XEROX CORP

XEROX CREDIT CORP

9.402
10.832
16.221
7.352
11.160
12.053
13.862
9.509
10.705
9.290
21.950
7.331
10.829
9.009
8.003
9.516
16.139
4.922
6.814
10.828
9.644
16.021
12.086
22.672
4.125
6.858
14.155
17.791
11.260
12.219
9.294
14.811
3.957
7.520
17.447
14.577
9.195
19.939
16.598
8.990
13.723
10.116
10.071
17.444
13.275
16.672

9.266
11.995
15.421

9.085
7.479
14.658
4.245
9.508
8.841
10.764
8.038
10.559
7.636
15.061
5.624
7.982
6.711
7.951
9.341
15.898
4.101
4.605
7.306
8.290
9.377
10.218
16.318
3.776
6.267
11.902
16.832
7.154
8.375
6.460
13.938
3.204
3.417
16.134
11.218
8.748
18.421
15.883
8.689
12.381
8.134
7.007
16.007
9.442
12.971

7.268

9.297
13.105
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16.809
7.861

14.948
11.687
14.765
15.289
17.366
11.737
11.531
17.681
7.195

11.095
19.399
11.952
15.983
8.495

17.964
8.249

13.530
16.037
11.210
9.149

33.141
29.509
6.954

8.611

22.523
33.558
17.046
17.154
20.404
13.444
6.921

13.072
13.845
18.815
5.380

22.845
19.262
10.890
15.281
15.698
18.001
26.410
6.777

24.225

11.273
13.892
17.389

22.294
6.707
12.438
11.230
7.428
9.321
7.692
13.298
9.620
8.399
13.976
9.597
12.668
7.841
9.632
5.824
18.211
9.112
9.948
18.292
10.601
7.033
31.708
27.990
5.638
8.815
23.709
37.417
15.091
12.218
19.680
12.696
6.781
7.307
12.997
7.912
6.831
13.736
16.754
12.140
14.705
14.365
17.152
20.446
8.546
10.964

8.538
12.048
15.073



Appendix B: Technical appendices

B.1 Bond pricing formulas
B.1.1 Solving the Riccati equalion using the method of Selby and Strickland (1995)

The class of exponential-affine (or simply affine) term structure models is a class of models
in which the yields to maturity are affine functions of some unobservable state variables Xy,
the dynamics of which are assumed to be

where Z; is a vector of independent Brownian motions and 2 is a vector of the model
parameters. The generic form of bond pricing formula for this class of models is

G(t,T,0) = exp(A(Q, T — t) + B(Q, T — 1)X,), (B.2)

where G(t,T,0) denotes the time ¢ price of a riskless zero-coupon bond that matures at time
T. Let Yi(Xy; Q,T —t) denote the time ¢ continuously compounded yield to maturity on this
bond, then the formula of this yield is given by

1 1

which is affine in the state variables Xj.

In the present context, the stochastic volatility model for A;; in equation (5) leads to a
closed-form solution to the price of a default-risky zero-coupon no-recovery bond issued by
firm j with a face value of one dollar as

B;(t,T,0,0) = exp|—7(c+c; —b15f1e — 695fa0)] exp[=N;,D(7) 4+ v; (1) + K(7)[B.4)
oo~ [ fru)] Bflexp(— [ fidu),

where f} = fi(1 +6;;), i =1, 2, and 7 = T — t. The first exponential component of the
solution in equation (B.4) is a constant, and the two conditional expectation terms in (B.4)
can be solved in simple closed-form (see e.g. Pearson and Sun (1994)).

In equation (B.4), the three functions D, F, and K have the time to maturity, 7, as
their only variable. They are the solutions to the following system of ordinary differential

equations (ODEs)

D'+aD—-1=0, D(0)=0; (B.5)

1 1
P = 552F2 —(V+&m)F — pSDF —mD + §D27 F(0) = 0; (B.6)
K' = —a)D ++oF, K(0)=0. (B.7)
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In the above system of ODEs, D’ denotes %—?, F’" and K’ are defined analogously; and
D(0) =0, F'(0) =0, and G(0) = 0 are the initial conditions.
The ODE in (B.5), which is for function D, can be solved in simple closed-form as

D(r) = é(l — e 7)), and function K can be found by direct integration once we know both

D and F'. The difficult part lies in finding the solution to the ODE for F'in (B.6), which is a
Riccati equation. A Riccati equation is one type of nonlinear first-order ODE. It is nonlinear
due to the presence of quadratic terms in it, e.g. the F'? component in (B.6). In the current
case, although function I’ can be found in closed-form, the solution is fairly complicated and
contains complex algebra.

To overcome this difficulty, Selby and Strickland (1995) make a simple substitution

H(@::expp—552lgpxuym4. (B.8)

This substitution transforms the nonlinear ODE in (B.6) into an equivalent linear second-
order ODE for H. Under this substitution, functions F' and K can be rewritten as

__2H(7)
F(r) = &)’ (B.9)
K(r)=XXD()—71)— 2y H(r). (B.10)

52

Therefore the solution to the bond pricing formula in (B.4) amounts to evaluating H(7) and
H'(7). A further substitution

1
T=——1In(z), 0<z<1,;
a

H(1) = 2°Q(z) (B.11)

reduces the ODE for H to a homogeneous linear ODE of second order for (), which can be
solved by using a standard series solution method. Once we obtain the solution to (), we
can retrace, substituting @) back into (B.11) for H, and then substituting H back into (B.9)
and (B.10) for F' and K, respectively. For computational details, please refer to Selby and
Strickland (1995).

B.1.2 The coupon bond pricing formula with non-zero recovery rate

Using a no-arbitrage argument, we know that the price of a default-free coupon bond
is the sum of the values of individual claims to its remaining coupon payments and its
principal, where each of these claims can be regarded as a zero-coupon bond. This is the
so-called “portfolio of zeros” approach to valuing a riskless coupon bond. In contrast, when
default is a factor, this “portfolio of zeros” approach needs some reconsideration since all
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remaining coupons now share the same default time if default occurs at or before time 7.
However, this approach is theoretically justified in Duffie and Singleton (1999) provided that
Aj+ and Lj; are “exogenous,” in that they do not depend on the value of the defaultable
claim itself, as is the case when pricing corporate bonds. This exogenous assumption is valid
in our framework since we are pricing corporate bonds and the recovery rate is assumed to
be fixed.

We denote by G(¢,T,cp) the price of a default-free coupon bond that pays cp dollars
at date T" and every six months (i.e. 0.5 years, see equation (B.12)) below) before T'. In
addition, at the maturity date T, the bond also pays its holder the principal value of one
dollar. Similarly, we use B;(t,T, cp,0) to denote an otherwise equivalent corporate coupon
bond with zero recovery in the event of default. No-arbitrage arguments tell us that we can
apply the “portfolio of zeros” approach to value these two coupon bonds as

N

G(t,T,cp) = cpd G(t,t+0.5k,0)+ G(t,T,0), (B.12)
k=1
N

B;(t,T,cp,0) = cp Z B;(t,t +0.5k,0,0) + B,;(t,7,0,0), (B.13)
k=1

where in both equations (B.12) and (B.13), N is the total number of coupon payments and
is equal to 2(T —t). The riskless zero-coupon bond prices that comprise equation (B.12)
are given by a well-known closed-form formula (see, for example, Pearson and Sun (1994)).
The zero-coupon corporate bond prices in (B.13), such as B;(t,T,0,0), are also in analytical
form, and can be derived using equation (4) and the Selby and Strickland method.

Finally, we denote by B;(t,T, cp,1— L) the time ¢ price of a corporate coupon bond with
a constant recovery rate of 1 — L. The assumption made on recovery rate in this paper
implies that upon default at time 75 ({ < 754 < T'), the bondholder essentially receives a
1 — L fraction of an otherwise equivalent riskless bond. As a result, beginning at 74, the
bondholder is going to receive cp(1l — L) dollars of coupon payment every six months prior to
T. At time T, she is going to receive a total of (1 — L)(1+cp) dollars of final coupon payment
plus principal. A modification of equation (10) shows that the value of B,({,T,cp,1 — L) is
equal to

B(t,T,ep,1 — L) = (1~ D)G(t,T,cp) + LB, (1, T, cp, 0). (B.14)

B.2 The Kalman filter
B.2.1 A brief summary of the Kalman filter

Consider an n X 1 vector of variables observed at time ¢, y;, and a 7 X 1 unobservable
state vector, &. The state-space representation of the dynamics of 1, is given by

§er1 = Fé&+ea, (B.15)
v = H& +wy, (B.16)
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where F' and H are r X r and n X r matrices, respectively. The r X 1 vector ¢, and n x 1
vector w; are vectors of white noise, F(ee€,) = @ and E(ww!) = R, for t # 7. Here, @
and R are of dimensions 7 X r and n X n, respectively. In addition, the disturbances ¢; and
w are assumed to be uncorrelated at all lags. In the Kalman filter setup, equation (B.15)
is called the transition equation (or the state equation), and equation (B.16) is called the
measurement equation (or the observation equation).

The Kalman filter is an algorithm for calculating linear least squares forecasts of the state
vector on the basis of data observed through date ¢, §1)¢ = E(&441]Y2), where Y, = (v, ..., ¥})
and F(&1|Y;) denotes the linear projection of &1 on Y;. It calculates these forecasts
recursively, generating o, {21, ..., &rjr—1 in succession. Associated with each of these
forecasts is a variance-covariance matrix based on the one-step-ahead prediction error

Py = E[(&1 — ft+1\t>(ft+1 - £t+1\t)/]7

which will be used to evaluate the likelihood function.
The key equations for the Kalman filter are

e = &je1 + Pyen H (HPye 1 H' + R) My — Hée—v),
Ser1e = F&ye,
Pyy = Py — Py H (HPyH' + R)ilHPt\tflu
P = FPy " + Q.

Among these four equations, equations (B.18) and (B.20) belong to the (one-step-ahead)
prediction stage; equations (B.17) and (B.19) are for the updating stage, i.e., using the
information available through date ¢ to update the previous (one-step-ahead) estimate of &,.

For a linear and Gaussian model, the method of maximum likelihood estimation (MLE)
can be used to estimate parameters of the model. The sample likelihood is given by

T
DoIn fwlYia), (B.21)
t—1
where we have
f(yt’}/tfl) =
n 1 1 B
(27T) 2 ’HPt\tle/ + R’ 2 exp[—§(yt - Hgt\tfl)/(HPt\tle/ + R) l(yt - Hgt\tfl)]-
(B.22)

When the measurement equation is nonlinear

ye = H(&) + wi, (B.23)
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where H(-) is a nonlinear function, the extended Kalman filler (EKF) can be used to obtain
an approximate filter. In particular, we replace the H () function in (B.23) with its first-
order Taylor’s approximation around & = &;;—; so that

OH (&)

Yy = H(St\tq) + Tﬂ

’Etzft\t—l (St - St\tfl) + Wy (B24)

The idea behind the EKF is that to treat equation (B.24), together with (B.15), as if they
were the true model. It follows that equations (B.17) through (B.20) will have to be modified
accordingly. For details, please refer to Hamilton (1994) and Harvey (1990). Also notice that
the parameter estimates obtained from the EKF will be quasi-maximum likelihood estimates

(QMLE), rather than MLE as in the linear model case. See also Footnote 7.
B.2.2 Details of the transition equations used in estimation

For estimation of the default-free interest rate model, the components a and b of the
transition equation in (12) are given by

(1 — /)

— l M2(1 o 67(;32/12) ] )
e~ #1/12 0
p o= e
and V(Fi_1) is a 2 x 2 diagonal matrix with elements

Vii(Fio1) = ¢ 'of [ fie1(e /12 — e 27/1%) 4 %(1 — e P22 fori=1,2.

For estimation of the stochastic volatility model of credit spreads, the components a; and
b; of the transition equation in (14) are

l M1 — e ) ] |

a; @(1 o 677’7/12)
[ efToz/IQ 0 ]
b = —7y/12 | >
0 e ™7
and I'(X;;_+) is a 2 X 2 matrix with the two diagonal elements given by (%T—;E)(e*m/m —

e 27/12) 4 L (1—¢ 27/12) and vj,t,T%(e’m/m—6’277/12)—I—g—iﬁ(l—e’m/m)Q, respectively, and

the off-diagonal element is pg[a?ﬂ(l — e T(eN12y 4 (—Ul"t;j—ii)(e*m/l2 — e 7(@N/12)] " where

we recall that 7 indicates the number of months elapsed between successive observations of

corporate bond prices of firm j.
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B.3 The conditional moments of the stochastic volatility model of credit
spreads

Assume that an n x 1 vector X, follows the stochastic differential equation (SDE)
dX; = U(Xy; 0)dt + 2(Xy; U)dW, (B.25)

where Wy is an n X 1 vector of independent standard Brownian motions. If U(X; ) and
Y(Xe; U)E(Xy; U) are affine functions of X, so that U(Xy; ¥) can be written in the form of
G + KX, where G and K are matrices of dimension n x 1 and n X n, respectively, then the
mean and variance of X;,;, conditional on X;, are also affine functions of X, as long as K is
diagonable (i.e., all of the eigenvalues of K are distinct). Here h denotes a sufficiently small
length of time.

Denote the eigenvalue decomposition of K by QkQ ™!, where Q = [Q; Qs ... Q,] and Q;,
i =1, 2, ..., n, are the n linearly independent eigenvectors of K, and k is a square diagonal
matrix with elements along its main diagonal being the n distinct eigenvalues of K. Then
Duan and Simonato (1999) show that the conditional mean of X, F(X5|X:), is given
by

E(XepnlXe) = Qe"Q X, + Qe — Dk 'Q G, (B.26)

which is clearly affine in X;. Similarly, we can compute the conditional variance of Xy,
Var(X; n|X¢). The required formulas for which can be found in Appendix B in Duan and
Simonato (1999).

We can use the above result to derive the conditional moments of the stochastic volatility
model of credit spreads. The model is

d)\;ft = a(X — )\;ft)dt + Uiz, (B-27)
dvjt = ’y(@ — ’th)dt + Sy/vjtdZQj,tu

where corr(zyj, 22;4) = p- Using a change of variable technique, we can rewrite the above
model as

AN = a(X — N5)dt + onyfugdzeg, + \fuzdzsgy, (B.28)
duje = (@ — wje)dl + 1y /ujed 5,
where w;y = (1 — p* v, u= (1 — p*)v, n = /1 — p%, and 0 = n—\/ﬁ. The two Brownian

motions 2y;, and 23, are now independent. We can rewrite the model in (B.28) in matrix
form similar to equation (B.25) as

a\ —a 0
“ = [W]’K_[ 0 —7]’

Xt — lA;t]7 th: [dZQj,t]7

U'jt
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and
N(Xy ) = | 7TV VL
URVATTIRY
Notice that in the present model, the matrix K is diagonable if and only if o # .
Substituting the above matrices into the formulas in Duan and Simonato (1999), one
obtains after some manipulation the conditional moments of this model in terms of the
original state variables A}, and v;; and the model parameters. The conditional means are

BN A5) = )\;tefo‘(‘g*t) + A1 —e b0y, (B.29)
E(vjslvg) = theﬂ(sft) +7(1 — e 7YY, for s > 1;

and the conditional variances and covariances are

”th—ﬁ
200 — 7y
v

— (1 — —2a(s—t)
(1),

v

Var(X\,|N) = ( )(efv(sft) _ e’QO‘(S*t))

(1 — e-ternt=ny ¢ L =0
@ty « (B.30)
_ef(aﬂ)(sft))]

COU()\;su Ujsl)\;tu th) = pg[

2 2
Var(vs|vy) = vjté(eﬂ(sft) —e Py 4 5—6(1 —e N2 for s >t
g
As s — oo, the processes for A}, and v;; have a steady-state (unconditional) distribution
%
steady-state covariance between X%, and v, is 7-2-. Finally, the above conditional moments
KE] J a+try s

can be derived alternatively using the method of Fisher and Gilles (1996).

with mean given by X and 7, and variance equal to = and %, respectively. In addition, the
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Table 1

Summary statistics for Moody’s credit spread indices

Moody’s 10-year and 30-year Aaa and Baa credit spreads (in basis points). The data
are monthly for January 1960 - April 2003 (for 10-year spreads) and February 1977
- February 2002 (for 30-year spreads). Source of data: Federal Reserve Board’s G.13

release.

Mean (in bps) Standard deviation (in %) Skewness Kurtosis

10-year Aaa 80.44 0.50 0.72 3.37
10-year Baa 179.73 0.70 0.37 2.71
30-year Aaa 76.62 0.38 0.90 3.72
30-year Baa 184.53 0.60 0.81 3.07
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Summary statistics for Standard & Poor’s credit spread indices

Table 2

Standard & Poor’s AAA, AA, A, and BBB credit spreads (in basis points) for various
maturities. The data are weekly and cover the sample period August 6, 1996 - September
11, 2001. Source of data: Standard and Poor’s.

Panel A. AAA l-year b5-year 10-year 15-year 20-year 25-year
Mean (in bps) 36.97 69.31 83.01 97.76 96.50 109.28
Standard deviation (in %) 0.24 0.28 0.32 0.40 0.35 0.38
Skewness 0.42 -0.02 -0.01 0.22x10°? 0.07 0.04
Kurtosis 2.28 1.55 1.57 1.56 1.67 1.66
Panel B: AA

Mean (in bps) 43.45  84.18 101.39  118.17 118.35 132.29
Standard deviation (in %) 0.25 0.33 0.39 0.48 0.44 0.47
Skewness 0.27 -0.04 -0.06 -0.10 -0.04 -0.05
Kurtosis 1.90 1.63 1.62 1.60 1.65 1.63
Panel C: A

Mean (in bps) 67.66 111.07 129.49 146.94 147.59 161.91
Standard deviation (in %) 0.36 0.44 0.49 0.58 0.53 0.56
Skewness 0.07 0.03 0.09 0.09 0.16 0.13
Kurtosis 1.78 1.61 1.66 1.67 1.72 1.68
Panel D: BBEB

Mean (in bps) 111.06 157.54 177.26 195.54 196.74 NA
Standard deviation (in %) 0.58 0.62 0.65 0.73 0.68 NA
Skewness 0.11 -0.05  -0.05 -0.04 -0.03 NA
Kurtosis 1.79 1.52 1.51 1.53 1.50 NA
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Table3
Summary statisticsfor corporate bond data

Corporate bond data are extracted from the Lehman Brothers Fixed Income Database. Every firm included in the sample must have at least 48
months in which at least 3 qualified bond price observations are available. There are in total 108 such firms over the sample period beginning
January 1985 and ending March 1998. In Panel B, yields denote actual yields to maturity on firms' outstanding bonds. In Panel C, credit spreads
are defined as the spreads of firms' actual yieldsto maturity over the riskless interest rates implied by the default-free interest rate model.

Across 108 firms

Panel A: corporate bonds Minimum 1% quartile Median 3% quartile  Maximum
Months of data 48 60 73 88 157
Mean number of bonds 3 3.55 4.40 5.77 12.36
Mean years to maturity 2.46 5.42 7.92 15.12 27.79
Minimum years to maturity 1.02 1.02 1.06 1.59 24.19
Maximum years to maturity 5.03 12.02 20.25 30.39 33.44
Mean annual coupon rate 0 7.69 8.37 9.03 11.74
Panel B: yields

Mean (in bps) 614.43 688.15 709.56 747.54 922.71
Standard deviation (in %) 0.52 0.65 0.77 1.04 1.99
Skewness -0.69 0.21 0.41 0.59 1.69
Kurtosis 1.45 2.07 243 275 7.30
Panel C: credit spreads

Mean (in bps) 136.85 202.45 246.07 276.57 390.20
Standard deviation (in %) 0.54 0.98 1.14 1.37 2
Skewness -0.65 0.25 0.39 0.68 1.89
Kurtosis 1.44 1.66 1.83 224 8.40
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Table 4
Estimation results for the default-free term structure
The instantaneous default-free interest rate, i;, is modeled as

it = c+ i+ for,
dfie = ¢i(pi — fir)dt + 054/ fudwy, (under the P measure)
dfie = (Gitti — (s + 1) fir)dt + 054/ firdBy, (under the @ measure)

for i =1, 2. We use an extended Kalman filter approach to estimate the above riskless
interest rate model. The data are selected from the CRSP and include month-end price
observations of the most recently issued Treasury bonds with maturities closest to 3 and
6 months and 1, 2, 3, 5, 10, and 30 years. The robust standard errors for the parameter
estimates are calculated following White (1982) and are presented in parentheses.

i ®s i g; b ¢ + T c

1 0.56 0.47 0.02 -0.03 0.53 -0.48
(0.0002) (0.00005) (0.00006) (0.00003) (0.00028)

2 0.02 0.10 0.05 -0.00008 0.02 -
(0.0005) (0.00011) (0.017) (0.059)

Bond maturity RMSE (in bps)

3 months 30.77

6 months 17.15

1 year 4.55

2 year 10.50

3 years 8.18

5 years 4.77

10 years 10.40

30 years 18.40
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Table 5
Estimation results for the stochastic volatility model of credit spreads

Under the physical measure P, firm j’ s instantaneous default probability at time ¢, A,
is assumed to follow the dynamics

Aje=¢j+ A%+ 61, (fre — E) + 09 (for — E);
d)\;'ft = (A — )\;'ft)dt + Vvied i,
dvje = Y(T — vj)dt + £ jd 2941,
where corr(z1;4, 22i1) = p, and fi and fo, are the two riskless factors of the default-

free interest rate model. Under the risk-neutral measure (), the processes for A%, and vy,
are

d)‘;kt = (OZX - Oé)\;t + nlvjt)dt + . /thdglj,ty
dvje = (V0 — (v + &n2)vs)dl + §\/05d 205,

where corr(Zi;, Z2j1) = p. An extended Kalman filter approach is adopted to estimate
the above stochastic volatility model of credit spreads. The data consist of month-end
corporate coupon bond prices, which are assumed to be observed with measurement
errors that are normally distributed with mean zero and variance ;.

Variable 15 quartile Median 37 quartile
c; -0.437 -0.061 -0.054

o 0.035 0.056 0.093

A 0.063 0.079 0.480

y 0.006 0.077 0.179

v 0.721x10°8 0.531x10°¢ 0.886x10°¢
£ 0.004 0.006 0.007

p -0.044 0.011 0.600

01, -0.766 -0.475 0.026

8. 10.202 0134 -0.026

JSi 0.271 0.369 0.727

m 6.379 9.956 15.770

Mo -68.046 -19.365 -10.425

v+ Ena -0.310 -0.009 0.106

Mean fitted Aj; 0.012 0.018 0.032
Mean fitted A}, 0.069 0.085 0.475
Mean fitted v, 0.241x10°4 0.581x10"4 0.121x10°3
In-sample RMSE (in bps) 7.27 9.30 13.11
Out-of-sample RMSE (in bps) 8.54 12.05 15.07
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Table 6
Estimation results for the benchmark model of credit spreads

In the benchmark model, under the physical measure P, firm j’s instantaneous default
probability at time ¢, Aj;, is given by

Ajt = &5+ N5+ 61(fre — Jae) + 625 (S — far),
d)‘;t = Iij(&j — )\;t)dt + O'jq/)\;ftd’u,jt,

where fi; and fy; are the two riskless factors of the default-free interest rate model.
Under the risk-neutral measure (), the process for A}, becomes

d)\;t = (KZJQJ — (Kj —I— WJ)A;t)dt —I— O’jq / )\;td?jﬁg

We use an extended Kalman filter approach to estimate the benchmark model. The data
consist of month-end corporate coupon bond prices, which are assumed to be observed
with measurement errors that are normally distributed with mean zero and variance 5j.

Variable 15t quartile Median 37 quartile
¢ 0.006 0.011 0.015
K, 0.301x10°7 0.026 0.376
0; 0.905x10°7 0.242x10°3 0.002
0, 0.024 0.045 0.064
61; -0.480 -0.242 -0.088
89 -0.183 -0.066 0.037
JSi 0.372 0.611 1.314
j -0.567 -0.326 -0.191
Kj+ T, -0.363 -0.223 -0.130
Mean fitted Aj; 0.010 0.014 0.019
Mean fitted A}, 0.493x1073 0.003 0.006
Mean fitted a;, /A5, 0.615x107%  0.002 0.005
In-sample RMSE (in bps) 9.27 11.99 15.42
Out-of-sample RMSE (in bps) 11.27 13.89 17.39
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Table 7TA
Estimation results for the stochastic volatility model of credit spreads using
Standard & Poor’s credit spread indices

Data used are described in Table 2. Parameters are defined in Table 5.

Variable AAA AA A BBB

¢ -0.059 -0.073 ~0.159 ~0.060

a 0.031 0.043 0.037 0.040

A 0.065 0.087 0.170 0.075

v 0.260 0.187 0.126 0.128

T 0484x10°7  0.197x10°  0.373x107®  0.400x10°°
¢ 0.005 0.013 0.004 0.005

p 0.367 0.392 0.549 0.374

81 -0.303 0.113 -0.190 -0.370

8y -0.163 0.072 -0.121 -0.100

@ 5880%10°%  5515x10°%  6.151x10~%  6.449x10°*
m 20.493 17.974 11.430 9.748

- -35.003 -0.761 -30.454 -18.518

v+ Eny 0.085 0.177 0.004 0.035
RMSE (in bps) 5.09 4.76 5.47 5.71
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Table 7B
Estimation results for the benchmark model of credit spreads using Standard

& Poor’s credit spread indices

Data used are described in Table 2. Parameters are defined in Table 6.

Variable AAA AA A BBB

Cj -0.297x1073 -0.476x1072 -0.185x 1073 0.292x10°°
K; 0.170 0.157 0.080 0.019

0; 0.182x1072 0.226x102 0.585%x 1072 0.033

oF 0.070 0.072 0.065 0.064

01 -0.085 -0.062 -0.080 -0.164

89 0.110 0.153 0.200 0.287

\/gj 8.784x 104 0.243x 104 8.433x 104 7.916x104
j -0.266 -0.263 -0.158 -0.070

Kj 4 T; -0.096 -0.106 -0.078 -0.051
RMSE (in bps) 8.23 8.69 7.90 7.28
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Table 8

Median estimation results for the stochastic volatility model of credit spreads

sorted by credit rating

Parameters are defined in Table 5. A firm’s credit rating is defined as the mean
of the Moody’s ratings on the firm’s qualified bonds over the sample period used

in the estimation of its term structure of credit spreads.

Variable Aa A Baa
Number of firms 12 60 36

o -0.614x10~1 -0.608x 101 -0.612x10~1
e’ 0.033 0.063 0.053

A 0.075 0.077 0.080

~ 0.144 0.100 0.034

v 0.498x10°6 0.531x10°6 0.510x 1076
£ 0.456x 1072 0.578x 1072 0.558 %102
p 0.375 0.009 0.018

1 -0.365 -0.459 -0.558

9 -0.097 -0.141 -0.134

m 10.059 9.385 10.870

72 -18.146 -15.185 -42.839

v+ Eng 0.024 0.059 -0.195
Mean fitted Aj, 0.012 0.016 0.028

Mean fitted A}, 0.073 0.081 0.098

Mean fitted vy, 0.294x 1074 0.715x10°4 0.637x10°4
In-sample RMSE (in bps) 7.66 9.41 10.69
Out-of-sample RMSE (in bps) 8.76 11.12 13.98
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Table 9
Median estimation results for the benchmark model of credit spreads sorted
by credit rating

Parameters are defined in Table 6. A firm’s credit rating is defined as the mean
of the Moody’s ratings on the firm’s qualified bonds over the sample period used
in the estimation of its term structure of credit spreads.

Variable Aa A Baa
Number of firms 12 60 36
¢ 0.006 0.009 0.014
K, 0.590x10°¢ 0.030 0.046
0; 0.512x10°° 0.370x10°3 0.508%x10°3
oF 0.030 0.045 0.047
01 -0.217 -0.191 -0.443
82 -0.068 -0.040 -0.092
T -0.274 -0.331 -0.326
Kj+ T, -0.274 -0.226 -0.208
Mean fitted Aj; 0.007 0.013 0.021
Mean fitted A}, 0.001 0.002 0.006
Mean fitted a1, /Xy, 0.152x1072  0.189x107%  0.004
In-sample RMSE (in bps) 9.14 12.13 13.16
Out-of-sample RMSE (in bps) 9.82 13.08 17.35
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Table 10A
In-sample RMSEs by maturity and credit rating

Across all 108 firms in the sample, there are in total 38,197 observations on bond prices
in the in-sample periods. We report in-sample RMSEs (in bps) for these bonds by
maturity and credit rating. The maturity of the bond (M) is measured in years. The
credit rating classese are defined according to Moody’s ratings on firms’ individual

bonds.

Panel A: maturity Number of bonds SV model Benchmark model
1 <M< 5 16,412 12.34 15.39
5 <M< 10 10,941 8.12 10.28
10 <M< 15 3,038 8.18 9.79
15 <M< 20 3,069 15.14 15.56
20 <M< 25 674 13.22 13.57
25 <M< 30 3,660 14.79 15.15
30 <M< 35 403 13.03 14.22
Panel B: credit rating

Aa 6,023 8.30 10.77
A 21,517 11.29 13.19
Baa 10,561 13.53 15.85
Below Baa 96 15.17 17.07
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Table 10B
Out-of-sample RMSEs by maturity and credit rating

Across all 108 firms in the sample, there are in total 6,101 observations on bond prices

in the out-of-sample periods. We report out-of-sample RMSEs (in bps) for these bonds

by maturity and credit rating. The maturity of the bond (M) is measured in years. The
credit rating classes are defined according to Moody’s ratings on firms’ individual

bonds.

Panel A: maturity Number of bonds SV model Benchmark model
1 <M<5 1,858 14.38 17.39
5 <M< 10 2,035 14.82 17.41
10 <M< 15 734 12.70 13.88
15 <M< 20 565 15.05 16.15
20 <M< 25 119 15.93 15.02
25 <M< 30 593 18.48 19.05
30 <M< 35 197 15.66 16.40
Panel B: credit rating

Aa 937 11.81 13.03
A 3,561 14.52 16.94
Baa 1,588 17.31 19.09
Below Baa 15 8.74 13.50
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Moodys 10-Year Credit Spreads
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Figure 1: Moody’s 10-year and 30-year Aaa and Baa credit spreads (in bps). Data
used aredescribed in Table 1.
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. Standard and Poor’s AAA and BBB credit spreads (in bps) for various
maturities. Data used are described in Table 2.
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Figure 3: Monthly relative changesin Moody's 10-year and 30-year Aaa and Baa
credit spreads. Data used are described in Table 1. Relative changein
credit spreads from month t to month t-1isdefined asIn(CS/CS.,),
where CS; denotes credit spread in month t.
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Figure 4: The average credit spreads of the Aa-, A-, and Baa-rated firmsimplied
by the stochastic volatility model of credit spreads.
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Figure5: The average credit spreads of the Aa-, A-, and Baa-rated firmsimplied
by the benchmark model of credit spreads.

53





