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1 Introduction

Since the mid-eighties, financial markets were subject to spectacular structural, technological

and regulatory changes. All these changes gave rise to a large number of trading structures

resulting in each market establishing its own functioning rules. The rules governing the func-

tioning of any market can be of two kinds: structural or organizational. Structural rules

regulate the trading method and market participants. Organizational rules instead discipline

some practical aspects such as the minimum price tick size, capacity of trading for brokers,

delays of disclosure of information about trades, etc...

In spite of this diversity, each trading structure may be described as an hybrid version of two

basic market structures: auction and dealership markets. Understanding the relative merits

of each of these pure trading mechanisms is an important issue from a normative standpoint

because it would allow to better design the specific hybrid version. Comparing these structures

would also help to deal with the optimal structure issue.

Auction and dealership markets differ along many dimensions and in rather subtle ways.

Two dimensions may however be considered as the main structural properties distinguishing

them. These dimensions are the degree of concentration of trading (centralized versus frag-

mented) and the timing of order submission for liquidity providers (quote and order-driven

markets). Auction markets are concentrated order-driven markets while dealership markets are

fragmented quote-driven.

In this paper, we compare these trading structures by looking at both dimensions distin-

guishing them. In an asymmetric information framework, these dimensions lead to different

levels of information available to market participants and in particular to liquidity providers.

In order-driven markets, traders act simultaneously without knowing the prices and liquidity

providers observe traders’ order flow before they choose their strategies. Conversely, in quote-

driven markets, dealers begin the trading process by posting prices. A main consequence of

the different timing of order submission is that liquidity providers compete differently. In fact,

in the order-driven markets they compete on quantities while in the quote-driven markets they

are engaged in price competition. Furthermore, dealers in fragmented markets have no infor-

mation about trading costs or trading sizes of their competitors because trades are executed in

bilateral meetings. They can only try to elicit some private information from individual orders.

In contrast, in concentrated markets, market makers learn more information about the final

asset value because they trade with more than only one counterpart.
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In the literature, the comparison between auction and dealership markets is generally based

either on the timing of order submission (see for instance, Pithyachariyakul (1986), Madhavan

(1992), Shin (1996), Bernhardt and Hughson (1996) and Viswanathan and Wang (2002)), or

on the concentration of trading (see e.g. Mendelson (1987), Pagano and Röell (1996) and Biais

(1993)). The introduction of both dimensions to distinguish auction and dealership markets in

our work is motivated by two main considerations.

First, we believe that introducing concentration in auction markets is a more realistic repre-

sentation of financial markets having a continuous auction structure. By assuming that auction

markets are centralized, we argue that the limit-order book may contain more than only one

order submitted by traders even when trading occurs continuously. This argument suggests

that, at each moment, each submitted order could be executed either against outstanding or-

ders on the limit order book or against orders coming from liquidity providers; hence, each

trader should consider the fact that her order is in competition with orders submitted by other

traders. In the previous literature, this kind of model describes periodic auction markets (or

batch auctions), so that the difference between batch markets and continuous markets is merely

based on centralization in the sense that auction markets are the ones where there is only one

order submitted by traders.1 This approach ignores that orders in periodic markets are sub-

mitted sequentially between execution rounds. So, in periodic markets, each trader chooses his

optimal strategy given the information he can infer from the existing order flow.2

Second, intuition suggests that there is a trade off between concentration of trading and

timing of order submission with respect to their impact on the market performances. This

is also supported by some existing results in the literature. For instance, Madhavan (1992)

proves that fragmented quote-driven markets are less sensitive to asymmetric information than

fragmented order-driven markets. However, when we introduce the concentration of trading to

characterize auction markets, it is clear that because of the higher transparency, concentrated

order-driven markets may become more viable than fragmented quote-driven markets.

Another important contribution of our paper is to compare auction and dealership market

with respect to different measures of market quality like market viability, price variability,

trading aggressiveness of informed traders and market liquidity. In addition to this, we evaluate

each trading structure from the point of view of a) policy makers, who need to choose the

1See Madhavan (1992) and Pagano and Roëll (1996).
2Under this distinction between continuous and periodic auction markets, the modeling of trade in batch

markets must be carried out by using a dynamic model so as to consider the adjustments of each trader’s
strategy to those already displayed on the screen.
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optimal trading structure; b) investors, who need to decide in which market to invest, and c)

firms, which have to choose where to be listed.

We show that concentration decreases the informational disadvantage of liquidity providers

leading to lower sensitivity of auction markets to asymmetric information. In the same way, we

prove that concentration allows a higher informational transmission among market participants

generating higher informational efficiency in auction markets. Empirically, these results suggest

that auction structure should be more suitable for markets with higher level of asymmetric

information. By studying IPOs, Falconieri, Murphy and Weaver (2003) document that the

level of underpricing is higher in the NASDAQ (a dealership like structure) than in the NYSE

(an auction like structure). This is exactly what our theoretical result predicts.

For informed agents aggressiveness, price variance and market liquidity, we find that compar-

ison between markets depend on their thickness. For the first measure, it is commonly argued

that informed traders will follow more aggressive strategies in quote-driven markets because of

their opacity. If we consider concentration, relative opacity is higher in fragmented quote-driven

markets which would accentuate the use of aggressive strategies by informed agents in these

markets. However, by introducing concentration, an opposite effect arises. Indeed, concentra-

tion decreases the informational advantage of informed agents because of the higher information

transmission among market participants. In this case, informed agents may trade more aggres-

sively in auction markets in order to counterbalance the loss of informational advantage. We

prove that this latter effect dominates the first one in thick markets. Hence, in thick markets,

informed agents strategies are more aggressive in auction markets than in dealership markets,

and vice versa.

A similar reasoning may be applied to price variance. Price distortions in order-driven

markets increase price variance in these markets. Even if concentration amplifies this first

effect, an opposite effect arises. Indeed, less asymmetric information decreases the variance

of prices. This latter effect will dominate in thick markets, leading to lower price variance in

auction markets.

Finally, concentration and timing of order submission have opposite effects on market depth.

Concentration leads indeed to lower marginal effect of individual orders, making concentrated

markets deeper. On the other hand, quote-driven markets seem to be deeper because com-

petition between liquidity providers in these markets is based on prices leading to lower price

sensitivity to traders’ orders. We prove that, the concentration effect dominates when the

number of liquidity providers is sufficiently large, and vice versa.
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The remainder of this paper is organized as follows: the next section spells out the model

which is based on Glosten (1989) and Madhavan (1992). Then, in section 3, auction and

dealership markets are characterized. Thereafter, in sections 4 and 5, equilibria in dealership

and auction markets are derived and some of their properties are described. The comparison

is exposed in section 6, and finally we conclude by some remarks and possible extensions. All

proofs are in the Appendix.

2 The model

We consider a simple one-period model in which agents liquidate their positions after trading

occurrence.3 There are two assets in the market: risk-free asset (cash), and a risky asset with

a stochastic liquidation value denoted by ṽ.

Two types of agents participate in the market: Traders and liquidity providers (or market

makers). Each of the N risk averse traders (indexed by i = 1, ...N) chooses a trading strategy

that maximizes his expected utility given his information set Hi. This set contains his private

information that represents his trading motivations, public information and the information

related to the trading structure. On the other hand, M risk neutral4 market makers (indexed

by m = 1, ...M) provide liquidity to traders. They behave strategically and maximize their

expected profits conditional on their information sets φm. These sets contain public information

and information related to the trading mechanism.

Each trader i is assumed to have a negative exponential utility function U(Wi) = −e−ρWi ,

where ρ is the coefficient of risk aversion and Wi is his final wealth.

Trader i’s private information is described by a vector (si, ωi); si is his private signal about

the final value of the risky asset and ωi is his initial endowments
5. We assume that, for the

rest of the market, endowments are normally distributed with mean 0 and precision πω. The

private signal of trader i is modeled as a noisy observation of the final value:

s̃i = v + �̃i.

We assume that, for all i, �̃i are independently normally distributed with mean 0 and precision

π�. It is publicly known that the final value of the risky asset is normally distributed with

3As in Madhavan (1992), we can easily extend this analysis to a multi-period framework where private
information lasts only one period. To simplify notation we omit this extention without loss of generality.

4As suggested by Pagano and Röell (1993) and Gould and Verrechia (1985), market makers should be
sufficiently less risk averse than traders so as to keep a certain level of market viability. Moreover, risk neutrality
in this model avoids the inventory costs problems that risk averse market makers would face.

5We could also see ωi as a liquidity shock for the traders’ portfolios.
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mean µ and precision πv; therefore, given his signal si, the trader i considers that ṽ is normally

distributed with mean si and precision π�.

This structure of private information with two sources of uncertainty allows the existence

of different trading motivations and the introduction of adverse selection problems in this

model of asymmetric information. Indeed, when a liquidity provider observes a large purchase

[respectively sell] order, he cannot know whether it comes from an information-based trader,

i.e., a trader having a good signal (si is high) [respectively, si is low], or from a liquidity-based

trader who trades for hedging reasons because of his initial endowments (−ωi is large) [ωi is
large].6

For each agent i, when qi is the quantity of risky assets demanded (or offered) and p is the

related unit price, his final wealth is W̃i = (qi+ωi)ṽ− pqi. If qi > 0, the trader i is a buyer and

if qi < 0 he is a seller. Since his final wealth is normally distributed and he has an exponential

utility function, the objective function of trader i is:

E[W̃i/Hi]− ρ

2
var[W̃i/Hi]

where E[./Hi] and var[./Hi] are expectation and variance operators conditional on Hi.

Public information contains market exogenous parameters (e.g., number of agents for each

type, absolute risk aversion), the distributions of the asset’s liquidity value, the noise about

private observations and trader’s initial endowments of risky assets. The last component of all

agents’ information sets are those related to market structures; they will be presented in the

following description of market organizations.

2.1 Auction markets (or centralized order-driven markets)

In auction markets, traders begin the trading process by choosing their strategies given their

information sets, and then, simultaneously, submit their orders to be displayed on the screen.

After observing the traders’ order flow, market makers determine their trading strategies and

submit their orders. All orders are accumulated and executed at a single clearing price.

These markets are order-driven because trading is started up by traders’ orders. All strate-

gies are chosen before the price is fixed. Rational traders will then submit quantity-price

6As in Biais, Martimort and Rochet (2000), this setting is a two dimensional adverse selection problem which
is technically extremely complex to solve. CARA utility functions and normal distributions allow to reduce this
problem to a one dimensional adverse selection problem using a variable which is a linear combination of private
signals and liquidity shocks.
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schedules.7 So, for each possible price, the trader will adjust his beliefs about the asset’s final

value given the information transmitted in this price. He considers the effect of his strategy on

the market clearing price.

In the model of Madhavan (1992), it is considered that at each trading round in continuous

order-driven markets there exists only one trader in the market. On the contrary, we assume

in this work that auction markets are also centralized. Under this more general modeling (in

some sense, without restriction on market liquidity), we assume that, at each trading round,

there are N traders submitting orders for the risky asset. Consequently, each trader should not

consider only his own effect on the price but also the effects of his competitors’ orders.

The role of market makers in these markets is to provide liquidity for traders. They are

institutional investors or intermediaries who respond to the order flow displayed on the screen.

Because these markets are characterized by a higher degree of transparency, market makers

are assumed to be symmetrically informed about market parameters and order flow. Each

market maker submits a quantity-price schedule that maximizes his expected profits given his

competitors’ trading strategies. Therefore, competition between them is based on quantities

and their effect on the equilibrium price is drawn through the effect of their orders on the

market clearing condition.

An important aspect distinguishing trading structures is the information sets available for

each market participant before choosing his trading strategy. Each agent i0s information set Hi

contains no information about markets since traders will begin the trading process. For market

makers, φm contains the aggregate order flow Q submitted by traders.8 Therefore:

Hi = {PI, (si, ωi)} for all i = 1, ..., N

and

φm = {PI,Q} for all m = 1, ...,M

(where PI = public information).

We denote the vector of traders’ demand functions by �Q = {q1(p), ..., qN(p)} and the vector
of dealers’ demand functions by �d = {d1(p), ..., dM(p)}. For all i, let �Q−i be the RN−1 vector of

7See Brown and Zhang (1997) where traders are compelled to submit market orders in auction markets (even
though they term this structure “ dealer markets”).

8This represents a low level of transparency for auction markets. However, we can imagine a more trans-
parent auction market in which market makers observe orders separately. Within the present model (normal
distributions, CARA utility function and rational expectation framework), this higher transparency has no
effect on equilibrium outcomes.
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all the other traders, i.e., �Q−i = {q1(p), ., qi−1(p), qi+1(p), .., qN(p)}.We define �d−m for dealers

in the same way. We define an equilibrium in auction markets as follows:

Definition 1 : The Bayesian Nash equilibrium in auction markets is defined by the set (p∗, �Q, �d)

such that:

(i) the equilibrium price p∗ satisfies the market clearing condition:

MX
m=1

dm(p
∗) +

NX
i=1

qi(p
∗) = 0 (1)

(ii) for all i ∈ {1, ..,N}, q∗i (p) is trader i’s strategy satisfying his optimality condition, given
the trading strategies of other market participants and given his information set:

q∗i (p) ∈ argmaxq(p){E[fW/Hi, p, �d, �Q−i]− ρ

2
var[fW/Hi, p, �d, �Q−i]} (2)

(iii) for all m ∈ {1, ...,M}, d∗m(p) is the market maker’s trading strategy satisfying the op-
timality of his expected profits conditional on the trading strategies of other market participants

and his information set:

d∗m(p) ∈ argmaxdm(p){E[(ṽ − p)dm(p)/φm, p, �Q, �d−m]} (3)

subject to non negativity.

2.2 Dealership markets (or fragmented quote-driven markets)

Each trading period in dealership markets may be divided in two sub-periods. In the first sub-

period, dealers begin by setting their bid-ask prices. Unlike market makers in auction markets,

dealers compete in prices because of their status of price setters. Then, each trader chooses the

best price for his unique order among dealers’ quotations.9

Dealership markets are quote-driven since trading is guided by quotes set by different dealers.

Because he cannot observe traders’ orders, each dealer sets a price-quantity schedule so that,

for each possible order size, he will extract all available information from this order.

These markets are also fragmented because trading occurs after pairwise meetings between

dealers and traders. Hence, during the trading process, neither the dealer nor the trader is

9Note that it is supposed that traders cannot split their orders among dealers. This may occur, for instance,
because of higher fixed transaction fees. See Dennert (1993) and Biais, Martimort and Rochet (2000) for models
of dealer competition where traders are allowed to split their orders among dealers. Biais, Foucault and Salanié
(1998) prove the importance of allocation rules when traders can split their orders among dealers.
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informed about other simultaneous trades on the market, if there is any. Because of this

opacity, the price is affected by only one order.

Since they move first in the dealership trading process by setting their price-quantity sched-

ules, dealers have no private information either about order flow or about the asset’s value. This

suggests that dealers, like market makers in auction markets, are symmetrically informed before

they set their prices. This occurs either because of the Mandatory Last Trade Displaying rule

or by assuming that each dealer can observe his competitors’ pricing function and can perfectly

learn all their private information. Obviously, we can consider another modeling of dealership

markets with a higher degree of opacity when last trade publication is not mandatory10 and

where dealers cannot extract all private information from the pricing functions of informed

dealers, or they cannot observe them.11

Since dealers compete on prices, using the standard argument for “Bertrand” games in these

markets where risk neutral dealers are symmetrically informed, the unique Nash equilibrium

for each of them is to set prices at the break-even level, i.e., prices equal the asset’s expected

value conditional on the order size and dealers’ information set. In fact, if dealers set prices to

make positive expected profits, it is always profitable for one dealer to undercut them.12

The information sets are φm = {PI} for dealers and Hi = {p(.), PI, (si, ωi)} for traders.
In dealership markets, the equilibrium is defined by the dealer’s common pricing function p(.)

and traders’ orders q(si, ωi) as follows:

Definition 2 : The equilibrium in dealership markets is a differentiable price function and a

corresponding demand q(si, ωi) such that:

(i) prices satisfy the zero-expected profit condition for dealers:

p(q) = E[ṽ/φm, q] = E[ṽ/PI, q]. (4)

10See Madhavan (1995) for a theoretical analysis of the mandatory trade publication in fragmented and
centralized markets. Gemmil (1996) provides an empirical evidence on the irrelevance of delayed publication
on market liquidity by comparing the SEAQ’s liquidity under three regimes of publication. He argues that
competition between dealers prevents them from exploiting the potential advantage that a delay provides.
11See Biais, Martimort and Rochet (2000) for a model of competition between market makers in a mechanism

design framework. In another context, Bernhardt and Hughson (1996) analyse the case of a competitive dealers
environment and consider the effect of the price tick size on the strategic behavior of dealers. See also Dennert
(1993) for a game theoretical analysis of competition between dealers.
12More precisely, price function is equal to the break-even level because of market opacity and because of the

fact that traders cannot split their order among dealers. Under the same conditions of risk neutrality, symmetric
information and price competition, when traders are allowed to split their orders and dealers are allowed to
observe all trading strategies of traders with their competitors, Biais, Martimort and Rochet (2000) prove that,
with a finite number of dealers, equilibrium prices are different from the break-even level.
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(ii) each trader i maximizes his expected utility given the pricing function and his informa-

tion set:

q(si, ωi) ∈ argmaxq{E[U(Wi(q)/Hi, p]}. (5)

Once equilibria in both markets are defined and trading structures are presented, we derive

these equilibria and establish their principal features.

3 Equilibrium in auction markets

We will focus on symmetric linear equilibria to make comparison between auction and dealership

mechanisms more tractable. As suggested in Madhavan (1992), one may argue that these linear

equilibria are “the most natural equilibria given the computational burden facing agents in the

economy”. As proposed in definition 1, the equilibrium is Bayesian-Nash. In this equilibrium,

each trader determines his optimal trading strategy in order to maximize his expected profits

given his conjectures about the trading strategies of the other informed traders. The conjecture

of each identical informed trader must be correct conditional on each trader’s information.

Proposition 1 :

Let ψ and ψm be defined as follows: ψ = πv + π� + (N − 1)π and ψm = πv + Nπ; where

π = π�/(1 +
ρ2

π�πω
). When

{π�[(M +N − 1)(2ψ − ψm) + πv]

[(M +N − 1)ψm − πv]
<

ρ2

πω
}

there exists an equilibrium for auction markets in which

(i)The strategy function of each market maker m is:

dm(p) = ζ(µ− p), (6)

(ii)The demand function of each trader i is:

qi(si, ωi, p) = αµ+ βsi − γωi − θp, (7)

(iii) the equilibrium price is:

p = µ+
1

Mζ
Q; (8)

with Q =
PN

i=1 qi and α, β, γ, θ and ζ are positive constants defined in the Appendix. Otherwise,

there is no linear equilibrium and market breaks down.
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In proposition 1, {π�[(M+N−1)(2ψ−ψm)+πv]
[(M+N−1)ψm−πv] < ρ2

πω
} is a necessary and sufficient condition for

equilibrium existence in auction markets. The left hand side may be interpreted as a measure

of asymmetric information between traders and market makers. It indeed depends on ψ and

ψm which are the adjusted precisions of the asset’s value distribution for respectively informed

traders and market makers. The information conveyed by each conjectured trader’s strategy

allows an additional precision about the asset’s value of π; then, for each trader, given his

conjectures about the (N − 1) other traders, the precision of the asset’s value is the sum of his

precision given his information set (πv+πε) and the (N−1) additional precision ( so (N−1)π).
On the other hand, for each market maker, given his conjectures about the traders’ strategies,

the precision of the distribution of the asset’s value is the additional precision inferred by

theses strategies (Nπ) and the ex ante precision πv. Note that this measure of asymmetric

information increases when π� is large relative to πv, i.e., when traders’ private information

is precise compared to public information about the final asset’s value. Conversely, when πv

is high and π� is low, i.e., when private signal does not present a substantial improvement

of information about the final asset’s value, then π�[(M+N−1)(2ψ−ψm)+πv]
[(M+N−1)ψm−πv] is low, which may be

interpreted as lower asymmetric information.

The right hand side of the condition for equilibrium existence ( ρ
2

πω
), may be seen as a

measure of liquidity-motivated trading which depends on trader’s risk aversion and the precision

of liquidity shocks. When traders are more risk averse or when the variance of their initial

endowments is high (πω is low), traders are more likely to be liquidity motivated. Hence,

equilibrium in auction market exists when asymmetric information is less important than non-

information trading motivation. Otherwise, market makers’ informational disadvantage relative

to traders is so severe that they cannot avoid negative expected profits and market breaks down.

Obviously, higher private information precision or lower precision of prior distribution of the

asset’s value for uninformed market makers lead to higher asymmetric information relatively

to liquidity measure and then to lower market viability. On the other hand, in order to study

the effects of ρ and πω on market viability, we need to study the variations of both measures

with these parameters. As mentioned above, non-information motivation measure is increasing

in ρ and decreasing in πω. For the asymmetric information measure, substitution of the values

of π, ψ and ψm, in the left hand side of the equilibrium existence condition gives

π�[(M +N)πv + (M +N − 1)π�(2 + (N−2)π�πω
π�πω+ρ2

)]

(M +N − 2)πv +N(M +N − 1) π2�πω
π�πω+ρ2

,

10



or equivalently

2π�[N(M +N − 1)π� + (M + 2N − 2)πv]
N [(M +N − 2)πv +N(M +N − 1) π2�

π�+
ρ2

πω

]
+ (N − 2)π�

N
.

Then the asymmetric information measure is increasing in ρ and decreasing in πω. In lemma

1 (see the appendix), we study the effect of increasing liquidity motivation on auction market

viability. We find that the marginal effect of an increase in the liquidity trading measure on

the asymmetric information measure is lower than 1. Then, when we increase risk aversion or

initial endowments variance, liquidity measure increases more than the asymmetric information

measure. Thus, the viability of auction markets increases with risk aversion and the variance

of initial endowments.

Further, in the proof of proposition 1, we show that ζ is positive. Hence, market makers

buy when prices are low and sell when prices are high. This means that liquidity providers

have a stabilizing behavior, even in a model where they behave as profit-maximizers and not

as social welfare maximizers.

Finally, we can easily see that the measure of asymmetric information is a decreasing func-

tion of N . Intuitively, when the number of traders on the market increases, market makers

gather more information from observed variables (the precision of their learned information is

[πv + Nπ]) which decreases their informational disadvantage and then, induces them to take

the opposite side of the market, leading to higher viability for auction markets.

As for traders’ number, the measure of asymmetric information decreases with the number

of market makers. Indeed, a larger number of market makers decreases the marginal amount

of asymmetric information supported by each one of them, what reduces their reluctance to

take the opposite side of the market and then enhances market viability. The equilibrium in

the limit case, i.e., when the number of market makers is extremely large, is characterized in

Proposition 2.

Proposition 2 : With market maker’s free entry, i.e., when M −→ +∞, equilibrium in

auction markets always exists and:

(i) β → b0

(ii) α→ 0

(iii) ζ → 0

(iv) γ → ρb0
π�

(v) θ → b0.

11



with b0 is the largest possible value of β given by

b0 =
πε − π

ρ
− πψ

ρ(πv + (N − 1)π)

Proposition 2 shows that free entry of market makers in auction markets raises traders’ ag-

gressiveness (β takes the maximal value that satisfies the dealers’ second order condition). This

occurs because of the centralization feature of auction markets. Indeed, since market makers

are numerous, the marginal effect of one trader’s order on the equilibrium price is sufficiently

small to allow him to trade more aggressively according to his private information and to carry

less about market makers’ adjustments about the final value of the asset. Furthermore, as pre-

dicted, the quantity demanded by traders (which is finite) is shared between all market makers,

and their individual order size tends towards zero.

In the following proposition, we derive some features of the equilibrium in auction markets,

when it exists, in order to use them subsequently when we begin comparison between structures.

Proposition 3 : When symmetric linear equilibrium exists for auction markets, then:

(i) equilibrium price is not semi-strong form efficient. This efficiency level is reached with

market makers’ free entry,

(ii) the variance of the equilibrium price tends towards zero when N → +∞,
(iii) with free entry, the quoted bid-ask spread tends to 2π

boπv
.

In part (i) of proposition 3 we prove that equilibrium price in auction markets is not semi-

strong form efficient because of market makers’ quantity-based competition which induces a

difference between equilibrium price and the expected value of the asset conditional on the

extracted information from the price function and public information. This difference disap-

pears with free entry because competition between market makers, even if it is quantity-based,

becomes a perfect competition leading price to the semi-strong form efficiency level. In part

(ii), it is shown that, when the number of traders becomes sufficiently large, market makers’

precision of extracted information increases and price tends towards the asset’s value v. Fi-

nally, in part (iii), we show that the quoted bid-ask spread in auction markets (which is equal

to p(1) − p(−1)) tends to its minimal value with free entry because, in this case, numerous
market makers share the risk between them and the “marginal” informational risk borne by

each of them is minimized.

12



4 Equilibrium in dealership markets

Equilibrium in these markets is derived as in Glosten (1989) and Madhavan (1992).13 By using

our notations we get the following proposition.

Proposition 4 : In dealership markets, equilibrium is defined by (p(q), qi(si, ωi)) such that:

for all q

p(q) = µ+
ρπ�πω

πvρ2 − π�πω(π� + πv)
q (9)

and

qi(si, ωi)) =
πvρ

2 − π�πω(π� + πv)

ρ[πvρ2 + π�πω(π� + πv)]
[−π�µ+ π�si − ρωi]. (10)

This equilibrium exists only if πvρ
2 > π�πω(π� + πv); Otherwise, there is no equilibrium price

schedule and market breaks down.

In proposition 4, a necessary and sufficient condition for equilibrium existence is

π�(π� + πv)

πv
<

ρ2

πω
.

If traders’ signal precision is sufficiently high, or dealers’ prior precision about the final security’s

value is sufficiently low, this leads to market failure. Intuitively, when information asymmetry is

large, then dealers’ informational disadvantage relative to traders is so severe that they cannot

make non negative expected profits. They will refuse to make transactions. Nevertheless, if

traders’ non-information related motivations for trade are important, dealers are urged to take

the opposite side of the market even with information asymmetry. Liquidity related motives

for trade depend on traders’ risk aversion and the precision of their initial endowments.

Contrary to auction markets, note that the equilibrium outcomes in dealership markets

depend neither on the number of traders nor on that of dealers. This is directly linked to

the structure of the trading in these markets. Symmetric behavior of dealers and the fact

that trading is involved in dealership markets after pairwise meetings between traders and

dealers entail this independence between equilibrium and the number of each type of market

participants in the market. However, the extreme fragmentation considered in these model

where each dealer cannot receive more than one order, induces that this equilibrium outcomes

are realized for M > N .

13See proposition 1 in Glosten (1989) and proposition 1 in Madhavan (1992).
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As in auction markets, we derive in the following proposition some useful features of the

equilibrium in dealership markets.

Proposition 5 : In dealership market, when equilibrium exists, we have:

(i) prices are semi-strong form efficient,

(ii) price variance is equal to π
(πv+π)2

,

(iii) the quoted bid-ask spread is an increasing function of π� and πω and a decreasing

function of πv and ρ.

The explicit bid-ask spread in these markets is an increasing function of the trader’s or-

der size, reflecting the response of dealers to the asymmetric information problem they face.

Furthermore, the quoted bid-ask spread is an increasing function of π� and πω, and a decreas-

ing function of ρ and πv. Thus, when trader’s private information about the asset’s value is

more precise or when their initial endowments are less variable, dealers’ beliefs that trading is

information-motivated increases leading to an increase in the adverse selection problem, and

consequently to an increase in the bid-ask spread. On the contrary, when traders are more risk

averse or when dealers have enough information about the risky asset (πv is higher), asymmet-

ric information is no longer severe and traders are more likely to be liquidity-motivated which

induces a decrease of bid-ask spreads.

5 Market performances and trading structures

In this section, we compare trading equilibria in both structures. Different indicators are used

to measure market performances. For each measure, we will discuss the implications of our

results on policy makers and investors decisions.

5.1 Market viability

Market viability reflects the ability of the trading structure to be less sensitive to asymmet-

ric information between different participants. In particular, it measures the willingness of

liquidity providers (market makers in auction markets and dealers in dealership markets) to

take the opposite side of the market even when they are informationally disadvantaged relative

to traders. From Proposition 1 and Proposition 4, market viability in both markets is mea-

sured by the conditions of existence of equilibria. We say that one market is more viable when

14



its equilibrium existence condition is satisfied each time the equilibrium exists on the other

market.14

Proposition 6 : Auction markets are always more viable than dealership markets; indeed,

equilibrium existence condition in auction markets is satisfied each time trading in dealership

markets exists. Moreover, when

π� < (1− 2

M +N
)
ρ2

πω
,

then for

Mπ�
2πω

(M +N − 2)ρ2 − (M +N)π�πω
− (N − 1) π�

2πω
ρ2 + π�πω

< πv <
π�
2πω

ρ2 − π�πω
,

equilibrium exists only in auction markets.

Madhavan (1992) shows that fragmented quote-driven markets are more robust to prob-

lems of asymmetric information than fragmented order-driven markets. Proposition 6 states

that introducing concentration in order-driven markets contradicts this results since in this

case auction markets are more viable than fragmented quote-driven markets. This is directly

attributable to the higher level of information conveyed in concentrated markets; indeed, this

higher level of information decreases the market makers’ informational disadvantage relative to

dealers operating in more opaque markets which incites them to take the opposite side of the

market in auction structure. For some values of private information precision, it is possible that

the precision of public information is such that auction markets exist but dealership markets

do not. Again, this is directly attributable to the concentration that enhances market makers’

informativeness and incites them to provide liquidity on auction markets while dealers will

not since their informational disadvantage is so high that they cannot trade without bearing

losses.15

14In this work, we consider only linear equilibria for auction markets. This restriction has no effect on the
result related to the market viability. We prove indeed that auction market are more viable than dealership
markets even under this restriction. This result holds when we consider other equilibria in auction markets.
15Glosten (1994) gets a similar result about the viability of auction markets. In his model, he proved, under

more general conditions, that auction markets (which have the same structure as the limit order book analyzed in
that work) does not invite competition from third market dealers, while other trading institutions do. However,
the comparison in Glosten (1994) is focused on the outcome for an agent who is in competition with the existing
limit order book (with an infinite number of market makers) by offering a liquidity providing services. It is
shown that this agent will always earn negative expected profits. On the contrary, these expected profits may
be positive if this agent would compete with another existing trading structure. This may be interpreted here
by considering that another trading alternative enhances the market viability in dealership markets contrary to
auction markets.
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Several regulating incentives and decision rules for investors may be deduced from this result.

First, consider a firm going public and having the possibility to choose between dealership and

auction structures. The IPOs environment is characterized by a higher level of asymmetric

information. Underpricing is also another peculiar feature of IPOs that is mainly explained

by arguments related to the level of asymmetric information between agents. Proposition 6

suggests that firms are better off going public in an auction structure since this will increase

the probability of success of their introductions. In terms of underpricing, this means that

it should be higher in dealership markets because of the lower robustness of this structure

to asymmetric information. This result is confirmed empirically in Falconieri, Murphy and

Weaver (2003) where it is documented that the level of underpricing is higher in the NASDAQ

(a dealership like structure) than in the NYSE (an auction like structure).

Second, market viability in practice is related to trading halts and circuit breakers. Propo-

sition 6 suggests that a firm quoted in both structures will be less exposed to trading halts,

caused by asymmetric information problem, than a firm quoted only in a dealership structure.16

Third, from a policy making point of view, dealership markets need a higher standards of

information disclosure about firms than auction markets in order to alleviate the asymmetric

information problem.

5.2 Traders’ aggressiveness

Trading aggressiveness of informed traders is measured in both markets by the marginal effect

of increasing one trader’s private signal on his trading strategy. This reflects the importance

of private information for this informed trader in his trading strategy. In auction markets, it is

equal to β and in dealership markets to:

βD =
π�[πvρ

2 − π�πω(π� + πv)]

ρ[πvρ2 + π�πω(π� + πv)]

which is equal to:

πv(π� − 2π)− π�π

ρ(πv + π)
.

It is commonly argued that, because of opacity, informed traders trade more aggressively in

fragmented quote-driven markets than in fragmented order-driven markets. If we consider con-

centrated order-driven markets, the relative opacity of dealership markets is more important,

16Trading halts are activated for different reasons. Some of them are institutional like those related to
regulatory rules of information disclosure and others may be strategically demanded by market makers (see
Edelen and Gervais, 2003).
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strengthening the argument of higher traders’ aggressiveness in dealership markets. However,

concentration has a positive effect on traders’ aggressiveness in auction markets. Indeed, con-

centration leads to a lower informational advantage for informed traders who may therefore

prefer to trade more aggressively in auction markets in order to compensate for their reduced

informational advantage. In accordance with this intuition, we prove the following:

Proposition 7 : For a finite M, when (N − 1) > π�(πv+π)
2π(π�−π) , traders in auction markets trade

more aggressively.

Thus, when traders’ number is sufficiently high, the second (positive) effect dominates since

strategies convey higher information and the marginal effect of each trader is sufficiently low

such that traders choose to be more aggressive in auction markets. With free entry, proposition

2 proves that β tends towards b0 that is higher than βD. Thus, trading is more aggressive in

auction markets in that case.

5.3 Price variance

Before receiving their private information and when they face the choice between market or-

ganizations, traders will be concerned with the ex ante price variances in both markets. Al-

ternatively, for regulators, price variance may be considered as a measure of price volatility

and could be an important argument for choosing the market structure featuring lower price

variance. From traders’ point of view, expected prices are the same in both structures. Thus,

because of their risk aversion the ex ante price variances may be considered as an important

parameter of comparison between markets.

Comparing price variances in dealership and fragmented order-driven markets, Madhavan

(1992) finds that price distortions caused by trading strategies of market makers lead to higher

price variance in order-driven markets. If we consider concentration in auction market, this price

distortions effect is amplified since we have in this case (M+N) agents affecting the equilibrium

price. Nevertheless, an opposite effect on price variance arises. Indeed, concentration reduces

the asymmetric information between traders and market makers; then, all agents learn more

information from their competitors’ strategies inducing lower price variance. In line with this

intuition, we prove the following.

Proposition 8 : With a fixed M , if N < (πv
π
)2, price variance is higher in auction markets;

when (N − 1) > π�2(πv+π)2−4π3(πv+π�)
4π4

, price variance is lower.
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Hence, as suggested by the intuition, if N is sufficiently low, price distortion effect dominates

the informational effect of concentration on price variance. However, whenN is sufficiently high,

information acquired by different market participants involves lower price variance in auction

markets compared to dealership markets.

This result is supported by the empirical work in Jain (2002). In that work, it is documented

that price volatility is higher in dealership markets than in auction markets. Market volatility,

in each market, is measured by the price variance of the most active firms for which it is more

likely to have a larger N.

In conclusion, regulators preferring markets with lower price variability will opt for an

auction structure if they expect their market to be relatively deep (N high) and for a dealership

structure if they consider that their market will be relatively thin (N is low).

5.4 Informational efficiency

It results from Proposition 3 and Proposition 5 that prices are semi-strong form efficient in

dealership markets but not in auction markets. This result is directly linked to the difference

of competition among liquidity providers. Price competition in dealership markets induces

prices to reflect all publicly available information, whereas, in auction markets, since they

are concentrated and market makers compete on quantities, each agent’s strategy influences

the equilibrium price leading to a non semi-strong form efficiency. With market making free

entry, auctions markets attain this level of efficiency. In that case, quantity based competition

converges, in terms of efficiency, to price based competition.

Note, however, that the semi-strong form efficiency of prices in dealership markets in this

model is due to the specific assumptions leading to the expected zero-profits condition. When

we introduce asymmetric information between dealers (no mandatory last trade publication)

or the possibility of splitting trader’s order among dealers,17 this level of efficiency should

disappear.

An alternative measure of efficiency is the following:

e = 1− var(ev/p)
var(ev) . (11)

This measure takes its values on [0, 1], and the extreme values represent complete informa-

tional inefficiency or efficiency. It is zero (one) when p is completely uninformative (perfectly

17In this case, when dealers are symmetrically informed and with a certain level of transparency for markets,
Biais, Martimort and Rochet (2000) prove that dealers’ expected profits are strictly higher than zero.
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informative) of the final value ev.
Transparency of auction markets leads to higher information transmitted in the equilibrium

price, and then to higher degree of efficiency. This is the intuition of the following proposition.

Proposition 9 : If we use the informational efficiency measure defined in equation (11), auc-

tion markets are more efficient than dealership markets.

5.5 Market liquidity

Since the model we use in this work is static, we use price related measures of market liquidity.18

Market depth or bid-ask spread are the appropriate measures. Because equilibria are linear,

both measures lead to the same comparison. Let us then consider market depth as a measure

of market liquidity. We say that one market is more liquid if its depth is higher. Market depths

in auction and dealership markets are denoted respectively by ∆A and ∆D, with

∆A =
(2−N)π� + 2(N − 1)π + (N − 1)ρβ

π�(π� − π − ρβ)

and,

∆D =
πvρ

2 − π�πω(π� + πv)

ρπ�πω
=

πv(π� − π)− π(π� + πv)

ρπ
.

Intuitively, because market depth is the effect of individual orders on prices, concentration leads

to lower marginal effect of each individual trader on prices. Then, concentrated markets seem

to be deeper. But, if we consider the second dimension distinguishing pure structures, i.e. the

timing of action for market participants, an opposite argument arises. Indeed, quote-driven

markets are deeper because price competition leads to a lower price sensitivity to trader’s

orders than in order-driven markets where competition between market makers is based on

quantities.19

18In a dynamic framework, another dimension of liquidity is the one related to immediacy cost for trading
over time (see for example Grossman and Miller, 1988).
19This argument may be proved using the equilibria derived in Madhavan (1992). In that work, if ∆∗Q and

∆∗O denote market depths in both markets (Q for quote-driven and O for order-driven), we have:

∆∗Q = ∆D =
πvρ

2 − π�πω(π� + πv)

ρπ�πω

and

∆∗O =
(M − 2)πvρ2 −Mπ�πω(π� + πv)

(M − 1)ρπ�πω .

So
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Therefore, market participant’s timing of action and concentration have opposite effects on

market depth, and once again, the liquidity based comparison between trading structures is

not obvious.

Because we do not have an explicit formulation of β, a direct comparison between ∆A and

∆D is not possible. Nevertheless, one can obviously see that for the bounds of β (i.e., zero

and b0), the difference between ∆A and ∆D is negative for the lower bound and positive for

the upper bound. Since, β is a continuous function of M , we conclude that if M is sufficiently

large, concentrated order-driven markets are deeper than fragmented quote-driven markets.

Intuitively, if quantity-based competition between market makers is greater, or sufficiently

“efficient”, the positive effect of concentration on depth dominates the negative effect generated

by the timing of action of market participants.

From regulators’ point of view, enhancing liquidity in auction markets should be done by

encouraging market making, otherwise it is better for them to opt for a fragmented quote-

driven structure where liquidity is greater. Similarly, investors and firms, looking “greedily”

for liquidity when they face the choice of the market structure where they prefer to act or to

be quoted, should study the level of competition between market makers in auction markets.

If it is deemed sufficiently efficient, they will choose auction structure. Otherwise, it is optimal

for them to opt for dealership markets.

6 Concluding Remarks

In this work, we establish a comparison between two financial market structures using the fact

that they differ with respect to two dimensions: concentration and timing of action for different

market participants. It turns out that some previous results on relative market performances

are no longer true when we consider both concentration and timing of action. For instance,

we proved that concentrated order-driven markets are less sensitive to asymmetric information

than fragmented quote-driven markets, while Madhavan (1992) argued the contrary. In the

same way, other results related to traders’ aggressiveness, price variability and market liquidity

are derived, confirming the importance of using both dimensions distinguishing markets. Some

∆∗Q −∆∗O =
πvρ

2 + π�πω(π� + πv)

(M − 1)ρπ�πω > 0.
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of these results are confirmed by several recent empirical works.

Nevertheless, this analysis lacks some features of financial market organizations that could

influence investors or regulators’ choices. Among others, we omitted the effects of inventory

costs on liquidity providers’ strategies, and execution risk faced by limit orders’ submitters in

auction markets (while in dealership markets, market makers provide them with an insurance

against this risk).

For the latter, it is clear that introducing it as a parameter of choice for traders fosters

dealership markets. So, depending on the importance that each investor attributes to this

parameters relative to performances considered in our model, one can guess the choice of each

trader. For investors and firms, there exists other regulating parameters which could be consid-

ered when they are choosing a trading structure; examples of such parameters are transaction

fees and trading capacity of intermediaries.20

For inventory costs, strategies of liquidity providers would be different in both markets and

their risk aversion measure will affect different market performances. However, it is not clear

whether this will be in favor of auction or dealership markets. An interesting field of research

is to compare these market structures when we consider both the adverse selection and the

inventory costs paradigms.21

Moreover, in this work auction and dealership markets are compared in a context where

they are assumed to be separate entities. So, the interaction between them when both of them

exist is ignored. Several works22 however prove that this point may have an important effect

over the performances of these structures and then over the investment strategies of investors

and the market structure choice of regulators.

Financial markets are rarely organized as pure fragmented quote-driven or centralized order-

driven. In fact, each one may be seen as an hybrid version of these extreme organizations. For

instance, at the Paris Bourse, which is organized as an electronic auction market, some trades

may be executed on the off-exchange markets23 so that trading is conducted without being

20See Röell (1990) and Fishman and Longstaff (1992).
21Brown and Zhang (1997) uses both paradigms to compare auction markets (termed limit order book mar-

kets) and another centralized order-driven market in which traders are compelled to submit market orders
(termed dealer markets). Then, the difference between these markets is based on the higher information for
dealers (observability of the traders’ order flow) and the existence of the execution-price risk in their dealer
markets. See also Hendershott and Mendelson (2000) for an analysis of the effects of introducing a competing
trading structure on dealer markets, where both asymmetric information and inventory costs are introduced.
22See for example Grossman (1990), Seppi (1990 and 1992) and Blume and Goldstein (1997) for a theoretical

analysis of the interaction between trading structures.
23Such tradings are called opérations de contrepartie.
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displayed on the screen (at least before its execution). On the New York Stock Exchange, there

is a monopolistic specialist for each stock which is in competition with market makers operating

via a centralized system. So, two natural questions arise: Is it possible to derive an optimal

trading structure as a combined version of the basic market organizations studied in this work?

and, how this optimal mechanism could depend on market features and regulators’ parameters

of choice?
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APPENDIX24

Proof of proposition 1:

This proposition is an extension of Madhavan (1992)’s fragmented order-driven equilibrium

construction. The proof constructs the linear Bayesian Nash equilibrium for auction markets

by solving for an agent’s best response to the conjectured strategies adopted by other agents

and then shows that these conjectures are consistent.

∗ step 1: Traders’ best replies
Suppose that a trader i with the information set Hi = (si, ωi) will conjecture that:

1. trading strategy for all j ∈ {1, ..., N} and j 6= i is :

qj(p) = αµ+ βsj − γωj − θp. (A.1)

2. the trading strategy of market maker m, for all m ∈ {1, ....,M} is:

dm(p) = ζ(µ− p) (A.2)

where β and γ are positive constants.

For this trader, if he chooses qi, the market clearing condition is:

Mζ(µ− p) + qi +
X
j 6=i
(αµ+ βsj − γωj − θp) = 0.

Then, the equilibrium price satisfies the following equality:

p = [
Mζ + (N − 1)α

λ
]µ+

1

λ
qi +

1

λ

X
j 6=i
(βsj − γωj) (A.3)

where λ = [Mζ + (N − 1)θ]. From equation (2) the trading strategy qi(p) satisfies:

qi(p) ∈ argmax
qi

{E[ṽ/si, p, �d, �Q−i](ωi + qi)− qip− ρ

2
var[ṽ/si, p, �d, �Q−i](ωi + qi)

2}.

Optimality conditions (the First and the Second Order Conditions) are

FOC : E[ṽ/si, p, �d, �Q−i]− p− ∂p
∂qi

qi − ρvar[ṽ/si, p, �d, �Q−i](ωi + qi) = 0 (A.4)

SOC : −2 ∂p
∂qi
− qi

∂2p
∂qi

2 − ρvar[ṽ/si, p, �d, �Q−i] < 0. (A.5)

24Equations related to auction markets, dealership markets and comaprison analysis are respectively labeled
A, D and C.
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From (A.3), we have ∂p
∂qi
= 1

λ
and ∂2p

∂qi
2 = 0, then the optimal trading order for i is:

qi =
E[ṽ/si, p, �d, �Q−i]− p− ρvar[ṽ/si, p, �d, �Q−i]ωi

ρvar[ṽ/si, p, �d, �Q−i] + 1
λ

. (A.6)

Let us turn to the computation of E[ṽ/si, p, �d, �Q−i] and var[ṽ/si, p, �d, �Q−i]. Define zi as

follows:

zi =
1

(N − 1)β [λp− (Mζ + (N − 1)α)µ− qi]. (A.7)

From equation (A.3), zi may also be written as follows:

zi =
1

(N − 1)β [
X
,j 6=i
(βsj − γωj)].

Thus, zi is a realization of a random variable z̃i = ṽ + exi where exi ∼ N (0, [(N − 1)π]−1) and
π =

1
1
π�
+ γ2

β2πω

=
π�πω

πω +
γ2π�
β2

. (A.8)

Given the equilibrium price, trader i observes a realization of z̃i; this allows him to adjust

his beliefs about the final value of the asset. Since all variables are normally distributed and

stochastically independent, the trader’s conditional expectation of ṽ is:

E[ṽ/si, p, �d, �Q−i] = E[ṽ/si, zi] =
πvµ+ π�si + (N − 1)πzi

ψ
(A.9)

and the conditional variance is

var[ṽ/si, p, �d, �Q−i] = var[ṽ/si, zi] = ψ−1 (A.10)

where ψ = πv + π� + (N − 1)π. Substituting (A.9) and (A.10) into (A.6) gives

qi(p) =
1

r
{µ[βπv − π(Mζ + (N − 1)α)] + βπ�si − βρωi − p[ψβ − λπ]}

(A.11)

where r = βρ+ π + β ψ
λ
.

Then, the trading strategy of i has the conjectured form with α, β, γ, and θ satisfying the

following equations:

α =
βπv − π(Mζ + (N − 1)α)

r
(A.12)

β =
βπ�
r

(A.13)

γ =
βρ

r
(A.14)

θ =
ψβ − λπ

r
(A.15)
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∗ step 2: dealers’ best replies
Suppose that the market maker m conjectures that traders’ strategies are described as in

(A.1) for j ∈ {1, ....,N} and that the trading strategies of his competitors are: dl(p) = ζ(µ− p)

for all l ∈ {1, ..,m− 1,m+ 1, ...,M}.
For this market maker, if his optimal order is dm(p), then the market clearing condition is:

dm(p) + (M − 1)ζ(µ− p) +
NX
j=1

(αµ+ βsj − γωj − θp) = 0.

Therefore,

p = µ[
(M − 1)ζ +Nα

λm
] +

dm(p)

λm
+
1

λm

NX
j=1

(βsj − γωj) (A.16)

with λm = (M − 1)ζ +Nθ. From equation (3), dm(p) satisfies:

dm(p) ∈ argmaxdmE[(ṽ − p)dm(p)/Q, p, �Q, �d−m].

The optimality conditions are

FOC : E[ṽ/Q, p, �Q, �d−m]− p− ∂p
∂dm

dm(p) = 0 (A.17)

SOC : −2 ∂p
∂dm
− dm

∂2p
∂dm

2 < 0. (A.18)

From (A.16), we have: ∂p
∂dm

= 1
λm
and ∂2p

∂dm
2 = 0. Thus, from (A.17), the optimal trading order

of m is:

dm(p) = λm[E[ṽ/Q, p, �Q, �d−m]− p]. (A.19)

Given his conjectures, market maker m observes

Q =
NX
j=1

qj = Nαµ−Nθp+
NX
j=1

(βsj − γωj); (A.20)

then, given p and this observation, m should observe

zm =
Q−Nαµ+Nθp

Nβ
. (A.21)

From (A.20), we have also that

zm =
1

N

NX
j=1

(sj − γ

β
ωj).
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Then, zm is a realization of a random variable z̃m = ṽ + eym, where eym is a centered normal

random variable with variance [Nπ]−1 where π is defined in (A.8).

Consequently,

E[ṽ/Q, p, �Q, �d−m] = E[ṽ/zm] =
πvµ+Nπzm

ψm
; (A.22)

with ψm = πv +Nπ. Substituting (A.22) into (A.19) gives:

dm(p) = {πvβ − π[(M − 1)ζ +Nα]

π + β ψm
λm

}µ− {ψmβ − π[(M − 1)ζ +Nθ]

π + β ψm
λm

}p.
(A.23)

This solution takes the form of market makers’ conjectured strategies when both terms are

equal to ζ. So we have

ζ =
πvβ − π[(M − 1)ζ +Nα]

π + β ψm
λm

(A.24)

and,

ζ =
ψmβ − π[(M − 1)ζ +Nθ]

π + β ψm
λm

. (A.25)

∗ step 3: existence of the equilibrium
The equilibrium exists when the equations system (A.12), (A.13), (A.14), (A.15), (A.24)

and (A.25) for the five variables α, β, γ, θ and ζ has a solution.

First, from (A.13) and (A.14) we have γ
β
= ρ

π�
. Substitution into (A.8) allows us to conclude

that π does not depend on equilibrium parameters:

π =
π2�πω

π�πω + ρ2
.

Moreover, from (A.24) and (A.25) we have : θ = β + α. Therefore, if we substitute theses

values of θ and ζ into different equations, the underlying system is simplified and we have to

solve a new system with only three variables:

Mζ + (N − 1)θ = (πv + (N − 1)π)β − π�α

π
(A.26)

[(πv + (N − 1)π)β − π�α](π� − π − ρβ) = πβψ (A.27)

ζ[π + β
ψm

λm
] = πvβ − π[(M − 1)ζ +Nα] (A.28)
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In the following, we will endeavour to find conditions under which a solution for this system

exists. From (A.27) we can write α as a function of β :

α =
β[(πv + (N − 1)π)(π� − π − ρβ)− πψ]

π�(π� − π − ρβ)
(A.29)

and from (A.26) we have,

ζ =
πvβ − α(π� + (N − 1)π)

Mπ
. (A.30)

Then multiplying by (M − 1), adding Nθ and considering the fact that θ = α+ β gives

[(M − 1)ζ +Nθ] =
β[((M − 1)πv +MNπ)β − α((M − 1)π� − (M +N − 1)π)]

Mπ
.

Substituting the value of α in (A.29) gives:

[(M − 1)ζ +Nθ] =
βψ[(2M +N − 2)π� − 2(M +N − 1)π − ρ(M +N − 1)β]

Mπ�(π� − π − ρβ)
;
(A.31)

we denote

g(β)
Def
=

βψ[(2M +N − 2)π� − 2(M +N − 1)π − ρ(M +N − 1)β]
Mπ�(π� − π − ρβ)

.

We will then derive another relation between [(M − 1)ζ + Nθ] and β using equation (A.28).

From (A.26) we have:

[(M − 1)ζ +Nα] =
πvβ − α(π� − π)

π
− ζ.

Substitution into the right hand side of (A.28) and simplification yield:

ζβψm

λm
= α(π� − π); (A.32)

substituting (A.30) and rearranging terms gives:

λm =
βψm[πvβ − α(π� + (N − 1)π)]

Mπα(π� − π)
. (A.33)

Finally, substitution of (A.29) into (A.33) and simplification give the following second relation

between λm and β:

λm =
βψmψ[(2−N)π� + 2(N − 1)π + (N − 1)ρβ]

M(π� − π)[(πv + (N − 1)π)(π� − π − ρβ)− πψ]

Def
= f(β). (A.34)
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From the second order condition of market makers’ maximization problem, λm has to be

strictly positive. Thus, equilibrium exists when f(β) > 0 and g(β) > 0. This occurs when β >

sup{0, a0} and β < b0 (with a0 6= b0) with:

a0 =
(N − 2)π�
(N − 1)ρ −

2π

ρ

and

b0 =
π� − π

ρ
− πψ

ρ(πv + (N − 1)π)
(note that b0 is always greater than a0 since πv > 0).

If b0 ≤ 0, f(.) is not defined and the equilibrium does not exist; so b0 has to be positive.

Let us derive a necessary and sufficient condition for the equilibrium existence.

We can write the following

(f − g)(β) = K1(β)× h(β),

with

K1(β) =
βψ

Mπ�ρ[π� − π − β](π� − π)(ψm − π)[b0 − β]

and

h(β) = X1ρ
2β2 +X2ρβ +X3,

where

X1 = −[(N − 1)π�ψm + (M +N − 1)(π� − π)(ψm − π)]

X2 = [(2N − 3)π� − 3(N − 1)π]π�ψm + (π� − π)[(ψm − π)
[(3M + 2N − 3)π� − 3(M +N − 1)π]− (M +N − 1)πψ]

X3 = (π� − π){2πψ[(2M +N − 2)π� − 2(M +N − 1)π]−
π�ψm[(2M + 2N − 4)π� − 2(M + 2N − 2)π]}. (A.35)

Since, K1(β) > 0 for all β ∈]0, b0[, we should study the sign of h(.) in order to state the
equilibrium existence.

We can easily see that X1 < 0. Then h(.) is a concave function over R and it reaches its
maximum at b0 such that: b0 = −X2

2ρX1
. Using the fact that b0 > 0, we can easily prove that

b0 > b0.
25

25Indeed,

b0 =
(N − 1)π�ψm[π� − π + ρa0]

2ρ[(N − 1)π�ψm + (M +N − 1)(π� − π)(ψm − π)]
+
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Therefore, h(.) is a strictly increasing function on ]0; b0[ and, proving the equilibrium exis-

tence is equivalent to show that h(0) = X3 < 0; indeed, since f(β)−g(β)→ +∞ when β → b0,

then h(b0) > 0, and if h(0) < 0, then from the intermediate value theorem we can conclude

that h(.) = 0 for some β0 ∈]0; b0[, and therefore that f(β0) = g(β0). Note also that by strict

monotonicity of h(.), this equilibrium is the unique linear symmetric equilibrium.

Now, rearranging the terms of (A.35) and considering the fact that (π� − π)(ψm − π) =

−πψ + π�ψm yield the following equality

h(0) = X3 = 2(π� − π)2{[(2M +N − 2)π� − 2(M +N − 1)π](π − ψm) +Mπ�ψm}.

Then, considering the fact that [(2M +N − 2)π� − 2(M +N − 1)π](ψm − π) is equal to

(M +N − 1)(π�ψm − 2πψ) + π�((M − 1)πv +MNπ)

gives

h(0) = 2(π� − π)2{π�πv − (M +N − 1)(π�ψm − 2πψ)}.
Therefore, equilibrium in auction markets exists if and only if:

π�πv − (M +N − 1)(π�ψm − 2πψ) < 0.

Substituting the equation defining π as a function of π�, πω and ρ, this condition can be written

as follows:
π�[(M +N − 1)(2ψ − ψm) + πv]

[(M +N − 1)ψm − πv]
<

ρ2

πω
.

Under this equilibrium existence condition, we can easily prove that trader’s second order

conditions are satisfied and that ζ, α, γ and θ are positive.

Lemma 1 : The first derivative of the measure of asymmetric information relative to liquidity

measure is lower than 1, i.e.,

∂[π�[(M+N−1)(2ψ−ψm)+πv ]
[(M+N−1)ψm−πv] ]

∂( ρ
2

πω
)

< 1.

(π� − π)(ψm − π)[(2M +N − 2)π� − 2(M +N − 1)π + (M +N − 1)ρb0]
2ρ[(N − 1)π�ψm + (M +N − 1)(π� − π)(ψm − π)]

then,

b0 − b0 = π�[
ψm[(N − 1)πψ − π�πv] + (π� − π)(ψm − π)[(M − 1)πv +MNπ]

2ρ(ψm − π)[(N − 1)π�ψm + (M +N − 1)(π� − π)(ψm − π)]
]

which is positive when b0 is positive.
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Proof of Lemma 1:

We have,

∂[π�[(M+N−1)(2ψ−ψm)+πv]
[(M+N−1)ψm−πv] ]

.
∂( ρ

2

πω
) = 2(M +N − 1)π3� [N(M +N − 1)π�+

(M + 2N − 2)πv]{π�[N(M +N − 1)π�+
(M +N − 2)πv] + (M +N − 2)πv ρ2

πω
}−2

Moreover, we can easily show that

π2� [N(M +N − 1)π� + (M +N − 2)πv]2 − 2(M +N − 1)
π3� [N(M +N − 1)π� + (M + 2N − 2)πv]

=
π2� [(M +N − 2)2πv2 +N(N − 2)(M +N − 1)2π2� + 2M(N − 2)(M +N − 1)π�πv],

which is positive. Thus,

2(M +N − 1)π3� [N(M +N − 1)π� + (M + 2N − 2)πv]
<

π2� [N(M +N − 1)π� + (M +N − 2)πv]2
<

[π�[N(M +N − 1)π� + (M +N − 2)πv] + (M +N − 2)πv ρ2

πω
]2.

This ends the lemma’s proof.

Proof of proposition 2:

Consider β∗ = lim
M→+∞

β where β∗ ∈ ]0, b0[ and β∗ must be different from 0 since we consider

that, at the equilibrium, β > 0 for all M > 1 and N > 1.26

We have, for the equilibrium solution β:

lim
M→+∞

f(β) = lim
M→+∞

g(β)

where,

lim
M→+∞

g(β) =
β∗ψ(2π� − 2π − ρβ∗)
π�(π� − π − ρβ∗)

(A.36)

and

lim
M→+∞

f(β) =
β∗ψψm(−(N − 2)π� + 2(N − 1)π + ρβ∗)

limM→+∞M(π� − π)[(π� − π − ρβ∗)(πv + (N − 1)π)− πψ]
.

From (A.36), 0 < lim
M→+∞

g(β) < +∞; it results that

lim
M→+∞

{M(π� − π)[(π� − π − ρβ∗)(πv + (N − 1)π)− πψ]} 6=∞.

26note that β = 0 is out of the equilibrium path since, in this case, traders will not trade using their private
signal.
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Therefore lim
M→+∞

{(π� − π)[(π� − π − ρβ∗)(πv + (N − 1)π) − πψ]} = 0 and from this equality

we conclude that: β∗ = b0. (ii), (iii), (iv) and (v) follow directly from equations (A.27), (A.26)

and (A.13).

Proof of proposition 3:

(i) The equilibrium price is equal to µ + 1
Mζ

Q, then p and Q are equivalently informative

for market makers, and we have:

E[ṽ/p,Q] = E[ṽ/p].

Yet, from (A.22),

E[ṽ/p,Q] = E[ṽ/zm] =
πvµ+Nπzm

ψm

.

Substitution of zm and Q respectively from (A.21) and the market clearing condition (equation

(A.3)) yields the following equation of the conditional expectation of v:

E[ṽ/p] =
πvβ − π(Mζ +Nα)

βψm
µ+

π(Mζ +Nθ)

βψm
p.

Substitution of (Mζ +Nα) and (Mζ +Nθ) from (A.26) as functions of β gives

E[ṽ/p] =
α(π� − π)

βψm
µ+

πψ(2π� − 2π − ρβ)

π�ψm(π� − π − ρβ)
p

which is equal to p only when M → +∞.
(ii) From the market clearing condition we can derive the following equation of p:

p = [
Mζ +Nα

Mζ +Nθ
]µ+

β

Mζ +Nθ
[
NX
j=1

(sj − ρ

π�
ωj)].

Then after substituting the value of Mζ +Nθ from (A.26), we have :

var(p) =
Nπ�

2(π� − π − ρβ)2

πψ2(2π� − 2π − ρβ)2
; (A.37)

which is equivalent to

var(p) =
Nπ�

2

πψ2[1 + π�−π
π�−π−ρβ ]

2
.

Since β is in ]0, b0[ then var(p) satisfies the following property:

Nπ

ψm
2 < var(p) <

Nπ�
2

4πψ2
. (A.38)

Thus, we can conclude that lim
N→+∞

var(p) = 0.
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(iii) The quoted bid-ask spread is equal to p(1) − p(−1) = 2
Mζ
. From equation (A.30), if

we compute the limit of Mζ as M → +∞ by considering the fact that β → b0 we find the

announced result.

Proof of proposition 4:

This proof is similar to the proof of proposition 1 in Madhavan (1992). For the sake of

completeness and in order to use some results derived in the proof we present it.

The equilibrium in dealership markets is defined by the couple (p(q), q). Considering that

dealers set a differentiable price function p(.), then a trader i, with information (si, ωi), chooses

a trading strategy qi satisfying his optimality condition

qi ∈ argmaxE[U(ṽ(ωi + qi)− p(qi)qi)/p(.), Hi] (D.1)

which is equivalent to

qi ∈ argmax{E[ṽ/si](ωi + qi)− p(qi)qi − ρ

2
(ωi + qi)

2var[ṽ/si]}.

The first and second order conditions are respectively

−p0(qi)qi − p(qi) + E[ṽ/si]− ρ(ωi + qi)var[ṽ/si] = 0 (D.2)

−p00(qi)qi − 2p0(qi)− ρ

πv + π�
< 0 (D.2’)

Since, E[ṽ/si] =
πvµ+π�si
πv+π�

, Substitution in (D.2) and rearrangement of terms give

πv + π�
π�

[p0(qi)qi + p(qi)]− πv
π�
µ+

ρqi
π�
= si − ρ

π�
ω (D.3)

Then, given his pricing function p(.), the dealer should observe a noisy valuation of the final

asset’s value si − ρ
π�
ωi. Consider z̃ = s̃i − ρ

π�
ω̃i, then z̃ = ev + ey0 with

ey0 ∼ N (0, π),
where π, as in the proof of proposition 1, is equal to π = π2�πω

π�πω+ρ2
.

Thus, from the dealer’s point of view, conditional expectation is:

E[ṽ/z] =
πvµ+ πz

πv + π
(D.4)

and

var[ṽ/z] =
1

πv + π
.
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Substitution of (D.3) and the π value into (D.4) and introduction of the fact that E[ṽ/z] =

E[ṽ/qi] = p(qi) gives the following equation

p0(qi)qiπ�πω(πv + π�)− p(qi)πvρ
2 + πvρ

2µ+ ρπ�πωqi = 0, (D.5)

or, equivalently:

p0(qi)qi =
a

b
(p(qi)− µ)− ρπ�πω

b
qi (D.6)

where a = πvρ
2 and b = π�πω(πv + π�).

• First case: a = b

In this case, (D.6) is:

p0(qi)qi = p(qi)− µ− ρπ�πω
b

qi.

This is a first order differential equation in p with a second member. Its solution is

p(qi) = µ+ Cqi − ρ

πv + π�
qi ln |qi|, (D.7)

where C is the integration constant. If C ≤ 0 then we have p(−qi) − p(qi) = −2cqi +
2 ρ
πv+π�

qi ln |qi|. Thus, for all qi > 1 we have p(−qi) − p(qi) > 0. This represents an arbi-

trage opportunity which will be eliminated by inter-dealer trading. Then, this cannot be an

equilibrium. If C > 0, substituting the value of p(qi) into the trader’s second order condition

gives the following:

−2C + 2 ρ

πv + π�
(ln |qi|+ 1) < 0.

Then, the order size has to be lower than exp(C(πv+π�)
ρ

− 1) to satisfy the dealer’s second order
condition, otherwise this condition will be violated. Thus, this cannot be an equilibrium.

• Second case: a 6= b

If we denote by

T (qi) = p(qi)− µ+
ρπ�πω
b− a

qi; (D.8)

and write (D.6) as a differential equation in T, we get

T 0(qi)qi =
a

b
T (qi). (D.9)
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The solution to this differential equation is

T (qi) = C1sign(qi)|qi|a/b.

Then, from (D.8) we have:

p(qi) = µ− ρπ�πω
b− a

qi + C1sign(qi)|qi|a/b (D.10)

substitution of the value of p(qi) in (D.10) into (D.2’) gives the following relation

C1
a

b
[
a− b

b
− 2π�πω]|qi|(a−b)/b > ρ

a+ b

(πv + π�)(b− a)
. (D.11)

If a < b and C1 ≤ 0 then p(−qi) > p(qi) for all qi > 0. Indeed

p(−qi)− p(qi) =
2ρπ�πω
b− a

qi − 2C1(qi)a/(π�+πv) > 0,

in this case we have an arbitrage opportunity and then this cannot be an equilibrium.

If a < b and C1 > 0 then from the trader’s second order condition we can prove the

existence of q∗ and q∗ such that this condition is violated for q /∈ [q∗, q∗]. Then, this cannot be
an equilibrium. Similarly, if a > b and C1 < 0 the trader’s second order condition is violated

for some values of q.

Finally, if a > b, and C1 ≥ 0, the second order condition is always satisfied, but these pricing
functions are dominated by the linear pricing function where C1 = 0. In fact, for all qi we have:

µ+
ρπ�πω
a− b

qi < µ+
ρπ�πω
a− b

qi + C1|qi|ab ,

and then the equilibrium price function is :

p(qi) = µ+
ρπ�πω
a− b

qi. (D.12)

Given this pricing function we can easily derive the trader’s strategy by substituting the value

of p(qi) into (D.3) which gives:

qi(si, ωi)) =
πvρ

2 − π�πω(π� + πv)

ρ[πvρ2 + π�πω(π� + πv)]
[−π�µ+ π�si − ρωi].

Proof of proposition 5:

(i) E[ṽ/p] = E[ṽ/E(ṽ/q)] = E[ṽ/q] = p, then prices in dealership market are semi-strong

form efficient.
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(ii) From the market clearing condition we have:

p(q) = µ+ [
π2�πω

πvρ2 + π�πω(π� + πv)
]{−µ+ si − ρ

π�
ωi};

rearranging terms gives

p(q) = [
πv(ρ

2 + π�πω)

πvρ2 + π�πω(π� + πv)
µ+ [

π2�πω
πvρ2 + π�πω(π� + πv)

]{si − ρ

π�
ωi}. (D.13)

Then, the price variance is :

var(p) = [
π2�πω

πvρ2 + π�πω(π� + πv)
]2
1

π
. (D.14)

After simplification we can write:

var(p) =
π

(πv + π)2
. (D.15)

(iii) The quoted bid-ask spread is defined by p(1)−p(−1). In dealership markets, it is equal
to

2ρπ�πω
πvρ2 − π�πω(π� + πv)

. (D.16)

Given this relation we can easily prove that partial derivatives of the quoted bid-ask spread

equation relative to π�, πω, ρ and πv are positive for the first and second argument and negative

for the latter.

Proof of proposition 6:

(i) Auction markets are more viable if their equilibrium exists each time the equilibrium in

dealership markets exists. In other words, this is the case when:

π�(π� + πv)

πv
<

ρ2

πω
=⇒ [(M +N − 1)π�[2ψ − ψm] + πv]

(M +N − 1)ψm − πv
<

ρ2

πω
.

From the first condition we have

π�
2πω(π� + πv) < πvπ�ρ

2

or,

π(π� + πv) < πv(π� − π).

Therefore, we get

π�πv > π(2πv + π�), (C.1)
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and

(π� − 2π) > 0. (C.2)

Now, we should prove that under these conditions, auction market’s equilibrium existence

condition is satisfied. We have:

(M +N − 1)(π�ψm − 2πψ)− π�πv =
(M +N − 2)π�πv + (M +N − 1)[(N − 2)π� − πv + 2(N − 1)π].

Using (C.1), we get:

(M +N − 1)(π�ψm − 2πψ)− π�πv >
π[(M +N − 1)(N − 1)(π� − 2π) + (M +N − 3)πv].

Since the right hand member of this equation is positive from (C.2), we have:

(M +N − 1)(π�ψm − 2πψ)− π�πv > 0.

(ii) Suppose that:

π� < (1− 2

M +N
)
ρ2

πω
, (C.3)

and
Mπ�

2πω
(M +N − 2)ρ2 − (M +N)π�πω

− (N − 1) π�
2πω

ρ2 + π�πω
< πv <

π�
2πω

ρ2 − π�πω
.

The second equation can be written as:

Mπ�π

(M +N − 2)π� − 2(M +N − 1)π − (N − 1)π < πv <
π�π

π� − 2π . (C.4)

By (C.3), we have (M +N − 2)π� − 2(M +N − 1)π > 0, so π� − 2π > 0.

Finally from these inequalities and (C.4), we have the following:

• πv[π� − 2π]− π�π < 0, then dealership market breaks down.

• (M +N − 1)[π�ψm − 2πψ]− π�πv > 0, then the equilibrium in auction markets exists.

Proof of proposition 7:

First, we can easily verify that 0 < βD < b0. Then, in order to compare trading aggressive-

ness in both markets, it is sufficient to compute h(βD) (see proof of proposition 1). In fact,

since h(.) is an increasing function on ]0, b0[ and h(β) = 0, if h(βD) > 0 then βD > β and

conversely if h(βD) < 0.
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The function h(.) may also be written as follows:

h(β) = π�ψm[π� − π − ρβ][(2−N)π� + 2(N − 1)π + (N − 1)ρβ]
−(π� − π)[(πv + (N − 1)π)(π� − π − ρβ)− πψ]
[(2M +N − 2)π� − 2(M +N − 1)π − (M +N − 1)ρβ];

then,
h(βD) = π{π�ψm[2π� + πv − π][π�(πv + π)− 2(N − 1)π(π� − π)]

−(π� − π)[2(π� − π)(πv + (N − 1)π)− π�(πv + π)]
[(M − 1)π�(πv + π) + 2(M +N − 1)π(π� − π)]}.

If we consider the fact that equilibrium conditions in both markets are satisfied, and that

βD ∈]0, b0[, we can argue that h(βD) < 0 whenever27,

π�(πv + π)− 2(N − 1)π(π� − π) < 0

which is equivalent to:

(N − 1) > π�(πv + π)

2π(π� − π)
.

In this case βD < β and trading is more aggressive in auction markets.

Proof of proposition 8:

From (A.38) we have

Nπ

ψm
2 < var(pA) <

Nπ�
2

4πψ2

and from (D.18), var(pD) = π
(πv+π)2

.

(i) Consider that N < (πv
π
)2. Then, (N − 1)[Nπ2 − πv

2] < 0. This is equivalent to (πv +

Nπ)2 −N(πv + π)2 < 0. Hence, var(pD) < Nπ
(πv+Nπ)2

< var(pA).

(ii) If (N − 1) > π�2(πv+π)2−4π3(πv+π�)
4π4

, then we have:

4π3ψ > π�
2(πv + π)2.

Multiplying both sides byN and considering thatNπ < ψ, we can write 4π2ψ2−Nπ�
2(πv+π)

2 >

0 which is equivalent to:

27Notice that this is just a sufficient condition for our result.
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π

(πv + π)2
>

Nπ�
2

4πψ2
.

then, var(pA) < Nπ�2

4πψ2
< var(pD).

Proof of proposition 9:

The measure of efficiency for both markets is:

eA =
Nπ

πv +Nπ

and

eD =
π

πv + π
;

where the first equation is derived from the definition of e and the fact that28 E[ev/p] =
E[ev/zm] = ψm = πv + Nπ;and, the second equation is derived from the definition of e and

(D.5).

A straightforward comparison between eA and eD gives the result.
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[22] Pagano, M. and A. Röell, 1993, “Auction Markets, Dealership Markets and Execution

Risk”, in V. Conti and R. Hamanui eds: Financial Markets Liberalization and the Role of

Banks; Cambridge University Press, Cambridge.
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